• Title/Summary/Keyword: Turbine Cooling

Search Result 240, Processing Time 0.028 seconds

A Study on Partial Load Performance of Absorption Type Heat Pump for Waste Heat Recovery of Closed Cooling Water (기기냉각수 폐열회수용 흡수식 히트펌프의 부분부하 성능에 관한 연구)

  • Park, Byungchul;Kim, Taehyeong;Kim, Kwangsu
    • Journal of Energy Engineering
    • /
    • v.28 no.2
    • /
    • pp.47-54
    • /
    • 2019
  • As absorption type heat pump for waste heat recovery is installed in combined cycle power plant for Energy Service Company, performance test is implemented to confirm the operation data on partial load. The operation data changes according to the heat pump operation on partial load are as follows. Total heat output increases, because waste heat of closed cooling water and a portion of LP steam from HRSG is supplied. But electric power output of steam turbine is reduced, because LP steam to steam turbine is reduced. And heat output from HP district heater and LP district heater is reduced, because HP turbine exhaust steam to HP district heater and LP district heater is reduced. On partial load operation, turbine output reduction is higher than the base load operation. Therefore, on partial load, heat pump should be operated in consideration of the heat output increase and electric power output reduction.

An Experimental Study of Jet Impingement Cooling on the Semi-Circular Concave Surface (반원 오목면에 분사되는 제트충돌 냉각에 관한 실험적 연구)

  • 양근영;최만수;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1083-1094
    • /
    • 1995
  • An experimental study has been carried out for jet-impingement cooling on the semi-circular concave surface. Two different nozzles(round edged nozzle and rectangular edged nozzle) are utilized and heat transfer coefficients on the concave surface have been measured under a constant heat flux condition. The characteristics of heat transfer has been discussed in conjunction with measured jet flow. Velocity and turbulence intensity of free jets issuing from two different nozzles have been measured by Laser Doppler Anemometry and theromocouple measurements have been done for temperatures on the concave surface. The effects of the nozzle shape, the distance between the nozzle exit and the stagnation point of the surface and the nozzle exit velocity on heat transfer were studied.

Effect of Vortex and High Turbulence on Film Cooling for Gas Turbine Combustor and Blades (가스터빈 연소실 및 블레이드 막냉각에서 와류 및 높은 난류 강도의 유동 효과에 대한 연구)

  • Cho, Hyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.471-474
    • /
    • 1996
  • The effects of injection angles between $0^{\circ}$ and $9^{\circ}$, mainstream turbulent intensities between 0.36 percent and 9.3 percent and embedded longitudinal vortices on jets issuing from a single film cooling hole and from a row of inclined holes are investigated. The heat transfer coefficients around film cooling holes are affected greatly by the compound injection angles. The injected jets affected weakly by the freestream turbulence at low level. However, the heat transfer coefficients near the film cooling holes have higher values at a high turbulence intensity. The vortices generated from a delta winglet change the injected jet direction and the kidney-type vortex pattern.

  • PDF

Study on TES system application for industrial production facility (축냉시스템의 산업용 생산설비 적용에 대한 고찰)

  • Park, C.H.;Hong, S.S.;Kim, J.R.;Park, S.S.;Hwang, H.S.
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1288-1293
    • /
    • 2009
  • The TES (Thermal Energy Storage) cooling system utilizing cheaper off-peak electricity has been applied just for building air-conditioning currently and causes limitation of usage rate and inefficiency of national resources utilization. In this regard, more says the necessity to apply TES system in industrial cooling system which is longer using period and wider usage. In this study, we will approve the technical and economical improvement in efficiency of industrial cooling system applied TES system by utilizing cheaper off-peak electricity and it will attribute the promotion of TES system and stabilization of supply and demand of electric power by proving the necessity to develop more efficient industrial cooling system by combining TES system.

  • PDF

Improvement of Film Cooling Performance of a Slot on a Flat Plate Using Coanda Effect (코안다 효과를 이용한 평판 슬롯의 막냉각 성능 향상)

  • Kim, Gi Mun;Kim, Ye Jee;Kwak, Jae Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.5-10
    • /
    • 2017
  • In this study, the Coanda effect inducing bump was applied to improve the film cooling effectiveness on the flat plate with $30^{\circ}$ and $45^{\circ}$ angled rectangular slots. The slot length to width ratio was 6. A cylindrical cap shaped structure, called Coanda bump, was installed at the exit of the slot to generate Coanda effect. The width and height of the bump was 10.5 mm and 1 mm, respectively. The film cooling effectiveness was measured at the fixed blowing ratio, M=2.0, using pressure sensitive paint (PSP) technique. The mainstream velocity was 10 m/s and the turbulence intensity was about 0.5%. Results showed that the film cooling effectiveness for case of $30^{\circ}$ angled slot was higher than that of $45^{\circ}$ angled slot. It was found that there was no positive effect of Coanda effect on the overall averaged film cooling effectiveness for the $30^{\circ}$ angled slot. On the other hand, for the $45^{\circ}$ angled slot, the film cooling effectiveness was improved with the installation of the Coanda bump.

Inspection System of Coating Layers by Thermal Behavior Effect (열 거동 영향에 따른 코팅층 검사 시스템)

  • Yun, Sung-Un;Kim, Jae-Yeol;Choi, Seung-Hyun;Kim, Hang-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.1-7
    • /
    • 2014
  • Gas turbines for generation are operated under high temperatures, high pressures and in corrosive environments for long periods of time. This environment causes serious damage to these parts. Therefore, the material, coating, and cooling technology used with a gas turbine are important factors with regard to turbine blade development. One method that can be used to protect a product from harsh conditions is the coating technology. A turbine blade undergoes very aggressive thermal stress and experiences high-temperature fatigue. In order to reduce the surface temperature of the components and protect the blade from high-temperature flames, a thermal barrier coating (TBC) is applied to its substrate. This study confirms the applicability of an inspection system for the turbine blade coating layer using an artificial heat source.

An Introduction to Speed Control System of Small Steam Turbine for Feed Water Supply in Power Plant (발전소 급수펌프 구동용 소형 터빈 제어시스템 소개)

  • Choi, In-Kyu;Kim, Jong-An
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1603-1604
    • /
    • 2007
  • The load of power plants changes every from time to time according to which steam flow of boiler changes. the feed water control is very important for the power plant to be operated in its stability conditions. In case of circulation type boiler, the instability of feed water control leads to instability of drum level control. The higher level of drum water can induce bad quality steam to go into turbine which means the possibility of damage. The lower level of drum water can induce the tubes of boiler water wall to be overheated. In case of once through type boiler, the instability of feed water control leads to bad cooling of superheaters. The less the feed water flow is, the more heated the superheater is. It is necessary for the turbine driving feed water pump to be controlled for the optimal feed water flow in the large capacity power plant. The speed of turbine is controled for the feed water flow. By the way, the optimal control of steam valve is necessary for the speed control of turbine. Therefore, the various kinds of the steam valve structures are introduced in this paper

  • PDF

On/Off-Design/Transient Analysis of a 50KW Turbogenerator Gas Turbine Engine (50KW 터보제너레이터용 가스터빈 엔진의 설계점/ 탈설계/과도성능해석)

  • Kim, Su-Yong;Park, Mu-Ryong;Jo, Su-Yong
    • 연구논문집
    • /
    • s.27
    • /
    • pp.87-99
    • /
    • 1997
  • Present paper describes on/off design performance of a 50KW turbogenerator gas turbine engine for hybrid vehicle application. For optimum design point selection, relevant parameter study is carried out. The turbogenerator gas turbine engine for a hybrid vehicle is expected to be designed for maximum fuel economy, ultra low emissions, and very low cost. Compressor, combustor, turbine, and permanent-magnet generator will be mounted on a single high speed (82,000 rpm) shaft that will be supported on air bearings. As the generator is built into the shaft, gearbox and other moving parts become unnecessary and thus will increase the system's reliability and reduce the manufacturing cost. The engine has a radial compressor and turbine with design point pressure ratio of 4.0. This pressure ratio was set based on calculation of specific fuel consumption and specific power variation with pressure ratio. For the given turbine inlet temperature, a rather conservative value of $1100^\circK$ was selected. Designed mass flow rate was 0.5 kg/sec. Parametric study of the cycle indicates that specific work and efficiency increase at a given pressure ratio and turbine inlet temperature. Off design analysis shows that the gas turbine system reaches self operating condition at N/$N_{DP}$ = 0.53. Bleeding air for turbine stator cooling is omitted considering low TIT and for a simple geometric structure. Various engine performance simulations including, ambient temperature influence, surging at part load condition. Transient analysis were performed to secure the optimum engine operating characteristics. Surge margin throughout the performance analysis were maintained to be over 80% approximately. Validation of present results are yet to be seen as the performance tests are scheduled by the end of 1998 for comparison.

  • PDF

Effects of Initial Nucleation Condition at the Start Block on the Grain Size and Growth Direction in Directionally Solidified CM247LC Superalloy (CM247LC 초내열합금에서 일방향응고 스타트 블록의 초기 핵생성 조건에 따른 결정립 성장)

  • Yoon, Hye-Young;Lee, Je-Hyun;Jung, Hyeong-Min;Seo, Seong-Moon;Jo, Chang-Young;Gwon, Seok-Hwan;Chang, Byeong-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • The grain size and growth direction of a directionally solidified turbine blade were evaluated by the initial nucleation condition at the start block of directional solidification. The initial nucleation condition was controlled by inserting a Ni foil on the directional solidification plate of the directional solidification furnace. Fine grains with good orientation were obtained in the faster cooling condition at the start block. The nucleus number was compared with the cooling rate of the start block by electron back scattered diffraction (EBSD). DSC (differential scanning calorimeter) analysis was performed to compare the melting point and undercooling for nucleation of the coarse nuclei and fine nuclei of the start block. The faster cooling condition at the start block showed more undercooling for nucleation and smaller size of nuclei which resulted in a fine grain with good orientation in the directional turbine blade.

Life Assessment of Gas Turbine Blade Based on Actual Operation Condition (실 운전조건을 고려한 가스터빈 블레이드 수명평가)

  • Choi, Woo Sung;Song, Gee Wook;Chang, Sung Yong;Kim, Beom Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1185-1191
    • /
    • 2014
  • Gas turbine blades that have complex geometry of the cooling holes and cooling passages are usually subjected to cyclic and sustained thermal loads due to changes in the operating characteristic in combined power plants; these results in non-uniform temperature and stress distributions according to time to gas turbine blades. Those operation conditions cause creep or thermo-mechanical fatigue damage and reduce the lifetime of gas turbine blades. Thus, an accurate analysis of the stresses caused by various loading conditions is required to ensure the integrity and to ensure an accurate life assessment of the components of a gas turbine. It is well known that computational analysis such as cross-linking process including CFD, heat transfer and stress analysis is used as an alternative to demonstration test. In this paper, temperatures and stresses of gas turbine blade were calculated with fluid-structural analysis integrating fluid-thermal-solid analysis methodologies by considering actual operation conditions. Based on analysis results, additionally, the total lifetime was obtained using creep and thermo-mechanical damage model.