• Title/Summary/Keyword: Turbine Blade Tip

Search Result 226, Processing Time 0.046 seconds

CFD and experiment validation on aerodynamic power output of small VAWT with low tip speed ratio (저속 회전형 소형 수직축 풍력발전기의 공기역학적 출력에 대한 CFD 및 실험적 검증)

  • Heo, Young-Gun;Choi, Kyoung-Ho;Kim, Kyung-Chun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.330-335
    • /
    • 2016
  • In this study, aerodynamic characteristics of the blades of a helical-type vertical axis wind turbine(VAWT) have been investigated. For this purpose, a 100-W helical-type vertical axis wind turbine was designed using a design formulae, and a 3D computational fluid dynamics analysis was performed considering wind tunnel test conditions. Through the results of the analysis, the aerodynamic power output and flow characteristics of a helical blade were confirmed. In order to validate the aerodynamic power output obtained through the analysis, a wind tunnel test was performed by using a full-scale helical-type vertical axis wind turbine. The 3D analysis technique was validated by comparing its results with those obtained from the wind tunnel test.

Numerical study to Determine Optimal Design of 500W Darrieus-type Vertical Axis Wind Turbine (500W 급 다리우스형 풍력발전기의 최적설계를 위한 수치적 연구)

  • Lee, Young Tae;Lim, Hee Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.693-702
    • /
    • 2015
  • This paper presents the performance characteristics of a Darrieus-type vertical-axis wind turbine (VAWT) with National Advisory Committee for Aeronautics (NACA) airfoil blades. To estimate the optimum shape of the Darrieus-type wind turbine in accordance with various design parameters, we examine the aerodynamic characteristics and separated flow occurring in the vicinity of the blade, the interaction between the flow and blade, and the torque and power characteristics that are derived from it. We consider several parameters (chord length, rotor diameter, pitch angle, and helical angle) to determine the optimum shape design and characteristics of the interaction with the ambient flow. From our results, rotors with high solidity have a high power coefficient in the low tip-speed ratio (TSR) range. On the contrary, in the low TSR range, rotors with low solidity have a high power coefficient. When the pitch angle at which the airfoil is directed inward equals $-2^{\circ}$ and the helical angle equals $0^{\circ}$, the Darrieus-type VAWT generates maximum power.

A Study on Partial Admission Characteristics of a Multi-Stage Small-Scaled Turbine (다단 소형 터빈에서의 부분분사 특성에 관한 연구)

  • Cho, Chong-Hyun;Jeong, Woo-Chun;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.943-954
    • /
    • 2010
  • In this study, a radial inflow type turbine was applied and the outer diameter of the turbine rotor was 108 mm. The turbine blade on a circular plate disc was designed as an axial-type because its partial admission rate was 1.4-4.1%. The turbine consisted of three stages. The performance test has been conducted with various admission rates, tip clearances and nozzle flow angles. The turbine output power was measured on each stage. The turbine performance was obtained in a wide rotational speed range in order to compare its performance according to various operating conditions. The net specific output torque was also measured to compare its overall performance. Computational analysis was conducted for predicting turbine performance. The computed results were in good agreement with the experimental results.

A Wind Turbine Simulator with Variable Torque Input (풍력 터빈 모의 실험을 위한 가변 토오크 입력형 시뮬레이터)

  • Jeong, Byeong-Chang;Song, Seung-Ho;No, Do-Hwan;Kim, Dong-Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.467-474
    • /
    • 2002
  • In this paper, a wind power simulator is designed and implemented. To realize the torque of wind blade, a DC motor is used as a variable torque input device. An induction machine is used as a generator of which speed is controlled to maintain the optimal tip speed ratio during wind speed change. Input torque of system is controlled by armature current of DC motor and speed is controlled by generator control unit using field oriented control algorithm. Various control algorithms such as MPPT, soft start up, the simulator reactive power control, can be developed and tested using the simulator.

A Study on the Performance of Tidal Turbine by Inflow condition (유입유동에 따른 조류터빈의 성능의 변화)

  • Kim, B.G.;Yang, C.J.;Choi, M.S.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.154-154
    • /
    • 2012
  • Many suggestions is offered to resolve global warming. Tidal current generation is producing power by switched tidal difference sea water horizontal fluid flow produced by tidal difference using rotor and generator. So, change the angle of inflow condition due to the entrance of efficiency are considered. We therefore investigated three dimensional flow analysis and performance evaluation using commercial ANSYS-CFX code for horizontal axis turbine. Then We also studied three dimensional flow characteristics of a rotating rotor and blade surface streamlines around a rotor. As a result, Cp was highest at TSR 5.5, especially the larger changes in the angle of inflow condition decreased efficiency.

  • PDF

Computational study of a small scale vertical axis wind turbine (VAWT): comparative performance of various turbulence models

  • Aresti, Lazaros;Tutar, Mustafa;Chen, Yong;Calay, Rajnish K.
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.647-670
    • /
    • 2013
  • The paper presents a numerical approach to study of fluid flow characteristics and to predict performance of wind turbines. The numerical model is based on Finite-volume method (FVM) discretization of unsteady Reynolds-averaged Navier-Stokes (URANS) equations. The movement of turbine blades is modeled using moving mesh technique. The turbulence is modeled using commonly used turbulence models: Renormalization Group (RNG) k-${\varepsilon}$ turbulence model and the standard k-${\varepsilon}$ and k-${\omega}$ turbulence models. The model is validated with the experimental data over a large range of tip-speed to wind ratio (TSR) and blade pitch angles. In order to demonstrate the use of numerical method as a tool for designing wind turbines, two dimensional (2-D) and three-dimensional (3-D) simulations are carried out to study the flow through a small scale Darrieus type H-rotor Vertical Axis Wind Turbine (VAWT). The flows predictions are used to determine the performance of the turbine. The turbine consists of 3-symmetrical NACA0022 blades. A number of simulations are performed for a range of approaching angles and wind speeds. This numerical study highlights the concerns with the self-starting capabilities of the present VAWT turbine. However results also indicate that self-starting capabilities of the turbine can be increased when the mounted angle of attack of the blades is increased. The 2-D simulations using the presented model can successfully be used at preliminary stage of turbine design to compare performance of the turbine for different design and operating parameters, whereas 3-D studies are preferred for the final design.

Bend-Twist Coupling Behavior of 10 MW Composite Wind Blade (10 MW급 복합재 풍력 블레이드의 굽힘-비틀림 커플링 거동 연구)

  • Kim, Soo-Hyun;Shin, Hyungki;Bang, Hyung-Joon
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.369-374
    • /
    • 2016
  • In this study, a structural optimal design of 10 MW composite blade was performed using bend-twist coupled(BTC) design concept. Bend-twist coupling of blade means the coupling behavior between the bending and torsional deflections due to the composite lamina with fiber angle biased from the blade longitudinal axis. This can potentially improve the overall performance of composite blade and reduce the dynamic loading. Parametric studies on layup angle, thickness and area of off-axis carbon UD were conducted to find the optimum coupling effect with weight reduction. Comparing the results of fatigue load analysis between conventional model and BTC applied model, the damage equivalent load(DEL) of blade root area were decreased about 3% in BTC model. To verify the BTC effect experimentally, a 1:29 scaled model was fabricated and the torsion at the tip under deflection behavior of blade stiffener model was measured by static load test.

Optimal Aerodynamic Design and Performance Analysis for Pitch-Controlled HAWT (가변 피치형 수평축 풍력 터빈의 공력 최적설계 및 피치제어 성능 연구)

  • Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.891-898
    • /
    • 2007
  • Optimal aerodynamic design for the pitch-controlled horizontal axis wind turbine and its aerodynamic performance for various pitch angles are performed numerically by using the blade element momentum theory. The numerical calculation includes effects such as Prandtl‘s tip loss, airfoil distribution, and wake rotation. Six different airfoils are distributed along the blade span, and the special airfoil i.e. airfoil of 40% thickness ratio is adopted at the hub side to have structural integrity. The nonlinear chord obtained from the optimal design procedure is linearized to decrease the weight and to increase the productivity with very little change of the aerodynamic performance. From the comparisons of the power, thrust, and torque coefficients with corresponding values of different pitch angles, the aerodynamic performance shows delicate changes for just $3^{\circ}$ increase or decrease of the pitch angle. For precisive pitch control, it requires the pitch control algorithm and its drive mechanism below $3^{\circ}$ increment of pitch angle. The maximum torque is generated when the speed ratio is smaller than the designed one.

The study of flow structure in a mixing tank for different Reynolds numbers using LES (대형 와 모사를 통한 레이놀즈 수 증가에 따른 혼합 탱크내의 유동 구조의 연구)

  • Yoon, Hyun-Sik;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1806-1813
    • /
    • 2003
  • The stirred tank reactor is one of the most commonly used devices in industry for achieving mixing and reaction. Here we report on results obtained from the large eddy simulations of flow inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius. Stereoscopic PIV measurements (Hill et $al.^{(1)}$) along with the theoretical model of the impeller-induced flow (Yoon et $al.^{(2)}$) were used in defining the impeller-induced flow as superposition of circumferential, jet and tip vortex pair components. Large eddy simulation of flow in a stirred tank was carried out for the three different Reynolds numbers of 4000, 16000 and 64000. The effect of different Reynolds numbers is well observed in both instantaneous and time averaged flow fields. The instantaneous and mean vortex structures are identified by plotting an isosurfaces of swirling strength for all Reynolds numbers. The Reynolds number dependency of the nondimeansional eddy viscosity, resolve scale and subgrid scale dissipations is clearly shown in this study.

  • PDF

The study of Flow Structure in a Mixing Tank for Different Reynolds Numbers Using LES (대형 와 모사를 통한 레이놀즈 수 증가에 따른 혼합 탱크 내의 유동 구조의 연구)

  • Yoon, Hyun-Sik;Chun, Ho-Hwan;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1290-1298
    • /
    • 2003
  • The stirred tank reactor is one of the most commonly used devices in industry for achieving mixing and reaction. Here we report on results obtained from the large eddy simulations of flow inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius. Stereoscopic PlY measurements (Hill et al. $^{(1)}$) along with the theoretical model of the impeller-induced flow (Yoon et al. $^{(2)}$) were used in defining the impeller-induced flow as superposition of circumferential, jet and tip vortex pair components. Large eddy simulation of flow in a stirred tank was carried out for the three different Reynolds numbers of 4000, 16000 and 64000. The effect of different Reynolds numbers is well observed in both instantaneous and time averaged flow fields. The instantaneous and mean vortex structures are identified by plotting an isosurfaces of swirling strength for all Reynolds numbers. The Reynolds number dependency of the non-dimensional eddy viscosity, resolved scale and subgrid scale dissipations is clearly shown in this study.