• Title/Summary/Keyword: Turbine Blade Inspection

Search Result 24, Processing Time 0.027 seconds

IR Camera Technique Application for Evaluation of Gas Turbine Blades Covering Integrity (가스터빈의 코팅층 건정성 평가를 위한 적외선 열화상 카메라 기법 활용)

  • Kim J.Y.;Yang D.J.;Choi C.J.;Park S.G.;Ahn Y.S.;Jeong G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.192-196
    • /
    • 2005
  • Key part of main equipment in a gas turbine may be likely to be damaged due to operation under high temperature, high pressure, high-speed rotation, etc. Accordingly, the cost for maintenance increases and the damaged parts may cause generation to stop. The number of parts for maintenance also increases, but diagnostics technology fur the maintenance actually does not catch up with the demand. Blades are made of precipitation hardening Ni superalloy IN738 and the like for keeping hot strength. The surface of a blade is thermal-sprayed, using powder with main compositions such as Ni, Cr, Al, etc. in order to inhibit hot oxidation. Conventional regular maintenance of the coating layer of a blade is made by FPI (Fluorescent Penetrant Inspection) and MTP (Magnetic Particle Testing). Such methods, however, are complicated and take long time and also require much cost. In this study, defect diagnostics were tested for the coating layer of an industrial gas turbine blade, using an infraredthermography camera. Since the infrared thermography method can check a temperature distribution on a wide range of area by means of non-contact, it can advantageously save expenses and time as compared to conventional test methods. For the infrared thermography method, however, thermo-load must be applied onto a tested specimen and it is difficult to quantify the measured data. To solve the problems, this essay includes description about producing a specimen of a gas turbine blade (bucket), applying thermo-load onto the produced specimen, photographing thermography images by an infrared thermography camera, analyzing the thermography images, and pre-testing for analyzing defects on the coating layer of the gas turbine blade.

  • PDF

A Study on Reliability Validation by Infrared Thermography of Composite Material Blade for Wind Turbine Generator (풍력발전용 복합소재 블레이드의 적외선 열화상 검사를 이용한 신뢰성 검증)

  • Kang, Byung Kwon;Nam, Mun Ho;Lim, Ik Sung
    • Journal of Applied Reliability
    • /
    • v.14 no.3
    • /
    • pp.176-181
    • /
    • 2014
  • In these days, new and renewable energy is getting popular around globe and wind power generator is one of the renewable energy. In this study, we conducted a study on defect detection of composite material blade for wind power generator by applying active infrared thermography and produced a defect test piece by applying composite material used for blade of wind power generator. An infrared thermal camera and 2 kW halogen lamp are used for the purpose of research as equipments. Also, we analyzed temperature characteristic by using infrared thermal camera after checking a heat source on a test piece and found effectiveness of infrared thermography to blade of wind power generator by detecting defects resulting from temperature difference of a test piece, which eventually improve the safety and reliability of the composite material blade.

The Evaluation of the Stress Corrosion Cracking for Improvement of Reliability in Turbine Operation and Maintenance (터빈 운전 신뢰성 향상을 위한 응력부식균열 평가)

  • Kang, Yong-Ho;Song, Jung-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.280-287
    • /
    • 2008
  • In case of low pressure steam turbine used in power plant, it was operated in wet steam and high stress condition. Therefore, it is possible that the corrosion damage of low pressure was induced by this condition. According to previous study, about 30% of total blade failure correspond to corrosion fatigue or SCC(stress corrosion cracking) in low pressure turbine. Especially, LSB(last stage bucket) of low pressure turbine has a higher hardness to prevent erosion damage due to water droplet however, generally this is more dangerous for SCC damage. Therefore, to improve reliability of turbine blade. various methods for SCC evaluation has been developed. In this study, the crack found in LSB during in-service inspection was evaluated using microstructure analysis and stress analysis. From the stress analysis, the optimum size of fillet to remove the crack was proposed. And also, the reliability was evaluated for modified LSB using GOODMAN diagram.

  • PDF

Quantitative Defects Detection in Wind Turbine Blade Using Optical Infrared Thermography (광 적외선열화상을 이용한 풍력 블레이드의 결함 크기 정량화 연구)

  • Kwon, Koo-Ahn;Choi, Man-Yong;Park, Hee-Sang;Park, Jeong-Hak;Huh, Yong-Hak;Choi, Won Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.25-30
    • /
    • 2015
  • A wind turbine blade is an important component in wind-power generation, and is generally exposed to harsh environmental conditions. Ultrasonic inspection is mainly used to inspect such blades, but it has been difficult to quantify defect sizes in complicated composite structures. Recently, active infrared thermography has been widely studied for inspecting composite structures, in which thermal energy is applied to an object, and an infrared camera detects the energy emitted from it. In this paper, a calibration method for active optical lock-in thermography is proposed to quantify the size. Inclusion, debonding and wrinkle defects, created in a wind blade for 100 kW wind power generation, were all successfully detected using this method. In particular, a ${\phi}50.0mm$ debonding defect was sized with 98.0% accuracy.

Evaluation of Fatigue Damage for Wind Turbine Blades Using Acoustic Emission (음향방출(AE)을 이용한 풍력 블레이드의 피로손상 평가)

  • Jee, Hyun-Sup;Ju, No-Hoe;So, Cheal Ho;Lee, Jong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.3
    • /
    • pp.179-184
    • /
    • 2015
  • In this study, the flap fatigue test of a 48 m long wind turbine blade was performed for 1 million cycles to evaluate the characteristics of acoustic emission signals generated from fatigue damage of the wind blades. As the number of hits and total energy continued to increase during the first 0.6 million cycles, blade damage was constant. The rise-time result showed that the major aspects of damage were initiation and propagation of matrix cracks. In addition, the signal analysis of each channel showed that the most seriously damaged sections were the joint between the skin and spar, 20 m from the connection, and the spot of actual damage was observable by visual inspection. It turned out that the event source location was related to the change in each channel's total energy. It is expected that these findings will be useful for the optimal design of wind turbine blades.

A Study on a Crack Evaluation Technique for Turbine Blade Root Using Phased Array Ultrasonics (위상배열 초음파를 이용한 터빈 블레이드 루트부내 결함평가 기법 연구)

  • Cho, Yong-Sang;Jung, Gye-Jo;Park, Sang-Ki;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.151-157
    • /
    • 2004
  • Ultrasonic testing is a kind of nondestructive test to detect a crack or discontinuity in materials or on material surfaces by sending ultrasound to it. This conventional ultrasonic technique has some limitations in reliably detecting crack or accurately assessing materials in the case of complex-shaped power plant components such as a turbine blade root. An alternative method for such a difficult inspection is highly needed. In this study, application of a phased array ultrasonic testing (UT) system to a turbine blade, one of the critical power plant components, has been considered, and the particular incident angle has been determined so that the greatest track detectability and the most accurate crack length evaluation nay be achieved. The response of ultrasonic phased array was also analyzed to establish a special method to determine the track )ength without moving the transducer. The result showed that the developed method for crack length assessment is a more accurate and effective method, compared with the conventional method.

Construction of Faster R-CNN Deep Learning Model for Surface Damage Detection of Blade Systems (블레이드의 표면 결함 검출을 위한 Faster R-CNN 딥러닝 모델 구축)

  • Jang, Jiwon;An, Hyojoon;Lee, Jong-Han;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.80-86
    • /
    • 2019
  • As computer performance improves, research using deep learning are being actively carried out in various fields. Recently, deep learning technology has been applying to the safety evaluation for structures. In particular, the internal blades of a turbine structure requires experienced experts and considerable time to detect surface damages because of the difficulty of separation of the blades from the structure and the dark environmental condition. This study proposes a Faster R-CNN deep learning model that can detect surface damages on the internal blades, which is one of the primary elements of the turbine structure. The deep learning model was trained using image data with dent and punch damages. The image data was also expanded using image filtering and image data generator techniques. As a result, the deep learning model showed 96.1% accuracy, 95.3% recall, and 96% precision. The value of the recall means that the proposed deep learning model could not detect the blade damages for 4.7%. The performance of the proposed damage detection system can be further improved by collecting and extending damage images in various environments, and finally it can be applicable for turbine engine maintenance.

Development of Digital-Image-Correlation Technique for Detecting Internal Defects in Simulated Specimens of Wind Turbine Blades (풍력 블레이드 모의 시편의 내부 결함 검출을 위한 이미지 상관법 기술 개발)

  • Hong, Kyung Min;Park, Nak Gyu
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.5
    • /
    • pp.205-212
    • /
    • 2020
  • In the performance of a wind turbine system, the blades play a vital role. However, they are susceptible to damage arising from complex and irregular loading (which may even cause catastrophic collapse), and they are expensive to maintain. Therefore, it is very important both to find defects after blade manufacturing is completed and to find damage after the blade is used for a certain period of time. This study provides a new perspective for the detection of internal defects in glass-fiber- and carbon-fiber-reinforced panels, which are used as the main materials in wind turbine blades. A gap or fracture between fiber-reinforced materials, which may occur during blade manufacturing or operation, is simulated by drilling a hole 5 mm in diameter in the middle layer of the laminated material. Then, a digital-image-correlation (DIC) method is used to detect internal defects in the blade. Tensile load is applied to the fabricated specimen using a tensile tester, and the generated changes are recorded and analyzed with the DIC system. In the glass-fiber-reinforced laminated specimen, internal defects were detected from a strain value of 5% until the end of the experiment, while in the case of the carbon-fiber-reinforced laminated specimen, internal defects were detected from 1% onward. It was proved using the DIC system that the defect was detected as a certain level of strain difference developed around the internal defects, according to the material properties.

Development of Precision Inspection Technique for Aircraft Parts Having Very Thin Features on CAD/CAI Integration (CAD/CAI 통합에 기초한 박형 단면을 가지는 항공기 터빈블레이드의 정밀측정기술 개발)

  • Park, Hui-Jae;An, U-Jeong;Kim, Wang-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1743-1752
    • /
    • 1996
  • In this paper, a precision inspection technique using CAD/CAI integration is proposed for the parts having very thin and sharp 3 dimensional curve features. The technique begings with feature reconstruction of turbine blades which have 3 dimensional combined feometry, such as splines, and thin circles. The alifnment procedures consistsb of two phases-rough and fine phases : rough phase alignment is based on the conventional 6 point5s probing on the clear cut surfacef, and fine phase alignment is based on the intial measurement on the 3 dimensional curved parts using an lterative measurement feed-back least sequares technique for alignment. Forf the analysis of profile tolerance of parts, the actual measured points are obtained by finding the closet points on the CAD geometry by the developed subdivision technique and the Tschebycheff norm is applied based on iterative fashion, giving accurate profile tolerance value. The developed inspection technique is applied to practical procedures of blade manufacturing and demonstrated high performance.

The Study for Fracture in the First Stage Blade of Aircraft Engine (항공기엔진용 1단계 터빈블레이드에 대한 파손 연구)

  • Yoon, Youngwoung;Park, Hyoungkyu;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.806-813
    • /
    • 2018
  • The fracture of a turbine blade of aerospace engine is presented. Although there are a lot of causes and failure modes in blades, the main failure modes are two ways that fracture and fatigue. Degradation of blade material affects most failure modes. Total propagation of failure in this study specifies failure of fracture type. Some section appears fatigue mode. Especially since this study describes analysis of failure for blade in high temperature, it can be a case in point. Analysed blade is Ni super alloy. Investigations of blade are visual inspection, material, microstructure, high temperature stress rupture creep test, analysis and fracture surface, etc. The root cause for fracture was stress rupture due to abnormal thermal environment. Thermal property of Ni super alloy is excellent but if each chemical composition of alloys are different due to change mechanical properties, selection of material is very important.