• Title/Summary/Keyword: Tunnel segment

Search Result 135, Processing Time 0.026 seconds

Prediction of TBM tunnel segment lining forces using ANN technique (인공신경망 기반의 TBM 터널 세그먼트 라이닝 부재력 평가)

  • Yoo, Chung-Sik;Choi, Jung-Hyuk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.13-24
    • /
    • 2014
  • This paper presents development of artificial neural network(ANN) based prediction method for section forces of TBM tunnel segment lining in an effort to develop an automatized design technique. A series of design cases were first developed and subsequently analyzed using the two-ring beam finite element model. The results were then used to form a database for use as training and validation data sets for ANN development. Using the database, optimized ANNs were developed that can readily be used to predict maximum sectional forces and their distributions. It is shown that the compute maximum section forces and their distributions by the developed ANNs are almost identical to the computed by the two-ring beam finite element model, implying that the developed ANNs can be used as design tools which expedite routine design calculation process. The results of this study indicate that the neural network model can be effectively used as a reliable and simple predictive tool for the prediction of segment sectional forces for design.

Continuous Excavation Type TBM Parts Modification and Control Technology for Improving TBM Performance (TBM 굴진향상을 위한 연속굴착형 TBM 부품개조 및 제어기술 소개)

  • Young-Tae, Choi;Dong-Geon, Lee;Mun-Gyu, Kim;Joo-Young, Oh;Jung-Woo, Cho
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.345-352
    • /
    • 2022
  • The existing NATM (New Austrian Tunneling Method) has induced civil compliants due to blasting vibration and noise. Machanized excavation methods such as TBM (Tunnel Boring Machine) are being adopted in the planning and construction of tunneling projects. Shield TBM method is composed of repetition processes of TBM excavation and segment installation, the machine has to be stopped during the later process. Consecutive excavation technology using helical segment is under developing to minimize the stoppage time. The modification of thrust jacks and module are planned to ensure the advance force acting on the inclined surface of helical segment. Also, the integrated system design of hydraulic circuit will be remodeled. This means that the system deactivate the jacks on the installing segment while the others automatically act the thrusting forces on the existing segments. This report briefly introduces the mechanical research part of the current consecutive excavation technological development project of TBM.

A Study on the Improvement of Connection for Shield Tunnel Lining Using Trapezoidal Segments (쉴드터널 라이닝 사다리꼴 세그먼트의 연결방법 개선에 관한 연구)

  • 정형식;김도열;김정수
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.251-262
    • /
    • 1999
  • The assemblage of the trapezoidal segments, which is being used increasingly to shield tunnelling, with Guide rod and Dowel forms tunnel lining. In this case the larger the taper angle of trapezoidal segment is, the easier the assembly work becomes. The large angle can reduce the water proof material's phenomenon of being pushed back, but decreases the structural safety in connecting section of tunnel lining. In this paper a 3-dimensional numerical analysis was performed to estimate the exact behavior of a model shield tunnel made by connecting 3-dimensionally various accessories with irregular sectioned segments. We obtained the operating force of connecting section according to the change of taper angle of trapezoidal segment and sought for improved scheme for connecting section by comparing and analyzing the test results on the friction resistance force of connecting parts.

  • PDF

A Study on the Improvement of Connection Method for Segment in Tunnel Lining System Using Prestressed Steel Cable by Real-scale Test (실대형 실험을 통한 쉴드터널의 강연선 체결방식에 대한 역학적 거동 분석)

  • Ma, Sang-Joon;Gil, Hu-Jeong;Kim, Dong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.6
    • /
    • pp.33-51
    • /
    • 2013
  • This paper introduces the improvement of connection method for segment in tunnel lining system using prestressed steel cable and presents the results of real-scale tests. It conducted a study about the applicability and mechanical behaviour analysis of the new method that connects segment tunnel lining using prestressed steel cable by real-scale test. Through the research, it was found that the new method has stronger connection than conventional assembling methods. Also, the new method can be expected to have integrated behavior and stability increase of shield tunnel lining. It is considered that the new method is much more effective than conventional assembling methods.

Mechanical behaviour of tunnel liner using precast segment reinforced by rib (리브 보강 프리캐스트 터널 Liner의 역학적 거동 특성)

  • Lee, Gyu-Phil;Lee, Sung-Won;Shiin, Hyu-Soung;Hwang, Jae-Hong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.295-302
    • /
    • 2008
  • Due to the limitation of construction efficiency and structural safety, the application of the high covering and wide width tunnels was limited prior to the introduction of precast cut and cover tunnels. Therefore, a cut and cover tunnel structure with rib reinforcement is proposed to mechanically improve the safety on condition of high covering and wide width tunnel. In this study, large-scale experiments are carried out to examine the mechanical behavior of the cut and cover tunnel structure with rib reinforcement under static load condition. Based on the results obtained from this study, the ultimate load of tunnel structure increases to about 3.3 times by rib reinforcement. Consequently, safety of tunnel structure increases compared to non-installed cases due to confining crown part by rib reinforcement.

  • PDF

Tunneling in Severe Groundwater Inflow Condition (지하수 과다유입 조건하에서의 터널굴착)

  • Lee, Young-Nam;Kim, Dae-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.2
    • /
    • pp.67-76
    • /
    • 2006
  • For a hydro power plant project, the headrace tunnel having a finished diameter of 3.3 m was constructed in volcanic rocks with well-developed vertical joint and high groundwater table. The intake facility was located 20.3km upstream of the powerhouse and headrace tunnel of 20km in length and penstock of 440m in height connected the intake and the powerhouse. The typical caldera lake, Lake Toba set the geology at the site the caving of the ground caused tension cracks in the vertical direction to be developed and initial stresses at the ground to be released. High groundwater table(the maximum head of 20bar) in the area of well-connected vertical joints delayed the progress of tunnel excavation severely due to the excessive inflow of groundwater. The excavation of tunnel was made using open-shield type TBM and mucking cars on the rail. High volume of water inflowraised the water level inside tunnel to 70cm, 17% of tunnel diameter (3.9m) and hindered the mucking of spoil under water. To improve the productivity, several adjustments such as modification of TBM and mucking cars and increase in the number of submersible pumps were made forthe excavation of severe water inflow zone. Since the ground condition encountered during excavation turned out to be much worse, it was decided to adopt PC segment lining instead of RC lining. Besides, depending on the conditions of the water inflow, rock mass condition and internal water pressure, one of the invert PC segment lining with in-situ RC lining, RC lining and steel lining was applied to meet the site specific condition. With the adoption of PC segment lining, modification of TBM and other improvement, the excavation of the tunnel under severe groundwater condition was successfully completed.

  • PDF

Simple Decompression of the Ulnar Nerve for Cubital Tunnel Syndrome

  • Cho, Yong-Jun;Cho, Sung-Min;Sheen, Seung-Hoon;Choi, Jong-Hun;Huh, Dong-Hwa;Song, Joon-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.5
    • /
    • pp.382-387
    • /
    • 2007
  • Objective : Cubital tunnel syndrome is the second most common entrapment neuropathy of the upper extremity. Although many different operative techniques have been introduced, none of them have been proven superior to others. Simple cubital tunnel decompression has numerous advantages, including simplicity and safety. We present our experience of treating cubital tunnel syndrome with simple decompression in 15 patients. Methods : According to Dellon's criteria, one patient was classified as grade 1, eight as grade 2, and six as grade 3. Preoperative electrodiagnostic studies were performed in all patients and 7 of them were rechecked postoperatively. Five patients of 15 underwent simple decompression using a small skin incision (2 cm or less). Results : Preoperative mean value of motor conduction velocity (MCV) within the segment (above the elbow-below the elbow) was $41.8{\pm}15.2\;m/s$ and this result showed a decrease compared to the result of MCV in the below the elbow-wrist segment ($57.8{\pm}6.9\;m/s$) with statistical significance (p<0.05). Postoperative mean values of MCV were improved in 6 of 7 patients from $39.8{\pm}12.1\;m/s$ to $47.8{\pm}12.1\;m/s$ (p<0.05). After an average follow-up of $4.8{\pm}5.3$ months, 14 patients of 15 (93%) reported good or excellent clinical outcomes according to a modified Bishop scoring system. Five patients who had been treated using a small skin incision achieved good or excellent outcomes. There were no complications, recurrences, or subluxation of the ulnar nerve. Conclusion : Simple decompression of the ulnar nerve is an effective and successful minimally invasive technique for patients with cubital tunnel syndrome.

Evaluation of steel fiber reinforcement effect in segment lining by full scale bending test (실물파괴실험에 의한 세그먼트 라이닝의 강섬유 보강 효과 평가)

  • Lee, Gyu-Phil;Bae, Gyu-Jin;Moon, Do-Young;Kang, Tae-Sung;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.215-223
    • /
    • 2013
  • An experimental research on the possibility of using fiber reinforced concrete precast tunnel segments instead of traditional reinforced concrete(RC) segment has been performed in europe. This solution allows removing the traditional reinforcement with several advantages in terms of quality and cost reduction. Full-scale bending tests were carried out in order to compare the behaviour of the segments under flexural actions on both rebar reinforced concrete and rebar-fiber reinforced elements. The test results showed that the fiber reinforced concrete can substitute the traditional reinforcement; in particular the segment performance is improved by the fiber presence, mainly in terms of crack.

Experimental study to determine the optimal tensile force of non-open cut tunnels using concrete modular roof method

  • Jung, Hyuk-Sang;Kim, Jin-Hwan;Yoon, Hwan-Hee;Sagong, Myung;Lee, Hyoung-Hoon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.229-236
    • /
    • 2022
  • In this study, a model experiment and field experiment was conducted to introduce the optimal tensile force when constructing a non-open cut tunnel according to the ground conditions of sandy soil. CMR (Concrete Modular Roof) method is economical because of the high precision and excellent durability, and corrosion resistance, and the inserted parts can be used as the main structure of a tunnel. In addition the CMR method has a stable advantage in interconnection because the concrete beam is press-fitted compared to the NTR (New Tubular Roof) method, and the need for quality control can be minimized. The ground conditions were corrected by adjusting the relative density of sandy soil during the construction of non-open cut tunnels, and after introducing various tensile forces, the surface settlement according to excavation was measured, and the optimal tensile force was derived. As a result of the experiment, the amount of settlement according to the relative density was found to be minor. Furthermore, analysis of each tensile force based on loose ground conditions resulted in an average decrease of approximately 22% in maximum settlement when the force was increased by 0.8 kN per segment. Considering these results, it is indicated that more than 2.0 kN tensile force per segment is recommended for settlement of the upper ground.

Deterioration Evaluation of Railway Line Segments for Budget Distribution (예산배분을 위한 철도선로구간의 노후도 평가)

  • Kim, Seong-Ho;Choi, Chan-Yong;Na, Hee-Seung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1802-1809
    • /
    • 2011
  • A distribution method of limited budget for rail line facility improvement is to use investment priorities of rail line segments based on their deterioration. In this paper we present an evaluation method of rail line segment deterioration which can be used to distribute limited budget. Rail line facilities include rail track, crossing, road bed, bridge, tunnel. These facilities deterioration and line shape can affect line segment deterioration. Deterioration evaluation method we present is a weighted sum of each component deterioration scores. The component weight can be obtained from experts using analytic hierarchy process.

  • PDF