• Title/Summary/Keyword: Tunnel safety

Search Result 1,125, Processing Time 0.033 seconds

A Study on Development of Lightweight Foam Filling Material for the Voids behind Tunnel Liner using Stone-dust and Application to the Old Tunnel (석분을 이용한 터널 뒤채움용 경량기포 충전재의 개발과 현장적용에 대한 연구)

  • Ma, Sang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.139-147
    • /
    • 2003
  • The most tunnel damage such as cracks or leakage which exist in tunnel lining commonly, is caused by the voids where exist behind the tunnel lining, through the tunnel safety inspections. These voids were analysed to affect to a stability of a running-tunnel seriously. The aim of this paper is to develope the lightweight foam concrete for tunnel backfilling material using stone-dust of cake state and to apply the lightweight foam concrete developed to the old tunnel. This paper shows the basic properties of lightweight foam concrete mixed with stone-dust including flow rate, unit volume weight, absorption rate and compressive strength. In addition, according to the designed compound ratio, the lightweight foam concrete was applied to the ASSM tunnel for an application assessment. The engineering application of the lightweight foam concrete as the old tunnel's backfilling material was confirmed in this assessment.

An Application of Safety Management for Tunnel Construction Using RTLS Technology (RTLS기술을 이용한 터널공사현장의 실시간 안전관리 적용방안)

  • Kim, Dae-Won;Moon, Sung-Mo;Cho, Hun-Hee;Kang, Kyung-In
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.2
    • /
    • pp.12-20
    • /
    • 2011
  • Recently, construction site scale has been growing larger along with the growth of national economy. As construction market requires time reduction, cost saving, and improving quality, a cutting-edge technology applied research has been gradually studied for more efficient project management. In particular, the Real Time Location System (RTLS) technology, a real-time location tracking system of construction resources, can be effectively used in safety management. This technology has been studied and applied in various industries including architectural, marine, urban, and other industries. However, although tunnel construction in civil engineering has a narrow space and many safety risks, there are not researched about this content. Therefore, this study proposes an advanced safety management model for tunnel construction using the RTLS technology and a measurement method of the feasibility of this model in the construction site.

Safety Evaluation of Subway Tunnel Structures According to Adjacent Excavation (인접굴착공사에 따른 지하철 터널 구조물 안전성 평가)

  • Jung-Youl Choi;Dae-Hui Ahn;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.559-563
    • /
    • 2024
  • Currently, in Korea, large-scale, deep excavations are being carried out adjacent to structures due to overcrowding in urban areas. for adjacent excavations in urban areas, it is very important to ensure the safety of earth retaining structures and underground structures. accordingly, an automated measurement system is being introduced to manage the safety of subway tunnel structures. however, the utilization of automated measurement system results is very low. existing evaluation techniques rely only on the maximum value of measured data, which can overestimate abnormal behavior. accordingly, in this study, a vast amount of automated measurement data was analyzed using the Gaussian probability density function, a technique that can quantitatively evaluate. highly reliable results were derived by applying probabilistic statistical analysis methods to a vast amount of data. therefore, in this study, the safety evaluation of subway tunnel structures due to adjacent excavation work was performed using a technique that can process a large amount of data.

Simplification of Tunnel Support System in Karst (석회암 공동발달지역의 터널지보패턴개발에 대한 연구)

  • 김상환;허종석;전덕찬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.281-288
    • /
    • 2003
  • In karst formation area, the tunnel support system is an important factor for the tunnel safety during operation. This paper presents the simplified tunnel support systems to be adopt in karst formation. For the tunnel planned in the project area, karst features and the expected scenarios in the tunnel area were developed based on the results of the geological and geotechnical assessment. In order to provide specific supporting system and construction details for a wide range of possible karst features, the generalized typical support systems are developed according to the classification of karst features. In addition, the initial support systems and construction sequence for each karst feature are also presented in this paper.

  • PDF

The study on the bearing capacity and settlement of a foundation placed over a tunnel (Tunnel 상부지반의 기초 지지력과 침하에 관한 연구)

  • 김수삼;정승용;김용수;권태창
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.4
    • /
    • pp.20-31
    • /
    • 1999
  • When a foundation on the ground with tunnel is constructed, the ultimate bearing capacity of a footing is reduced by tunnel. In practice, structure may bate a considerable damage because of large settlement. This study shows that the settlement which is caused by variety of the ultimated bearing capacity leads fatal damages to the footing above tunnel. Therefore, it is necessary to study on the reduction both of the ultimate bearing capacity which leads a failure and of tolerable settlement which satisfies the safety of the building. For this reason, the variety of ultimated bearing capacity was analyzed using tub-dimensional elasto-plastic finite difference method in this paper. As a result, bearing capacity of the foundation above tunnel should be determined after establishing limit of allowable settlement and considering reduction-ratio of bearing capacity.

  • PDF

A Study of Quality Improvement of the Exterior Inspection Using Tunnel Scanning System (터널스캐닝 시스템을 이용한 외관조사 품질개선에 관한 연구)

  • Jee Kee-Hwan;Chung Jae-Min;Hong Sa-Jang;Kim Su-Un
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.234-239
    • /
    • 2004
  • Recently, the tunnel structures are increasing. And the tunnels are to be large diameter tunnel and long. Therefore, inspection, repair, and maintenance of tunnels are an extremely important part of infrastructure management, with particular technical and safety considerations arising from the very nature of underground construction. To inspect surface state of tunnels, concrete structures, it must generally use method of conventional visual inspection, but this method is very not objective. To measure the width, length, position, direction of a crack, it is very difficult, when the tunnel is long span and high rise. Thus, to make up for this demerits, in this paper is proposed the Tunnel Scanning System that we can check conditions of the tunnel structures quickly, detect the detailed data objectively, count automatically the width of a crack by the original software and follow the trend of long tenn changes in the condition of a tunnel.

  • PDF

A Study on Optimized Blasting Pressure Considering Damage Zone for Railway Tunnel (손상영역을 고려한 철도터널의 최적의 발파압력 선정에 관한 연구)

  • Park, Jong-Ho;Um, Ki-Yung;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1162-1170
    • /
    • 2011
  • Since there is 70% of the land in South Korea is forest, tunnel constructions by blasting are common for building railways and roads. The damage to the bedrock and the development of overbreak near the face of the tunnel during the blasting directly affect the safety of the tunnel and the maintenance after the construction. Therefore, there is a need to investigate the damage zone in the bedrock after the blasting. The damage zone changes the properties of the bedrock and decreases the safety. Especially, the coefficient of permeability of the damaged bedrock increases dramatically, which is considered very important in construction. There is a lack of research on the damage that bedrock is received with respect to the amount of explosives in blasting, which is required for the design of optimum support in blast excavation that maximizes the support of the bedrock. Therefore, in this research, numerical analysis was performed based on the field experiment data in order to understand the mechanical characteristics of the bedrock after to the blast load and to analyze the damage that the bedrock receives from the blast load. In addition, a method was proposed for selecting the optimum blast pressure for train tunnel design with respect to the damage zone.

  • PDF