• Title/Summary/Keyword: Tunnel pollutants

Search Result 49, Processing Time 0.031 seconds

A Numerical Study on Effective Smoke-Control System of a Rescue Station in a Tunnel Fire (터널내 열차 화재시 효과적인 구난역 제연 설비를 위한 수치 해석 연구)

  • Yang, Sung-Jin;Won, Chan-Shik;Hur, Nahm-Keon;Cha, Chul-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.575-578
    • /
    • 2006
  • In designing smoke-control system of rescue station in train tunnel, a purpose is to prevent a disaster by proposing the jet fan operation together with smoke-control curtain in tunnel fire. This study has investigated the relationship of the Heat Release Rate(HRR) and a adequate ventilation velocity to control the fire propagation in tunnel fire, and has improved the effect of the smoke-control curtain on preventing the flow of pollutants. In this study, Computational Fluid Dynamics(CFD) simulations with ST AR-CD(ver 3.24) were carried out on predicting the fire spreading and the flow of pollutants, considering jet fan operations and effect of smoke-control curtain. Our simulation domain is the full scale model of the 'DAEGWALLYEONG' 1st tunnel. The results represent that ventilation operation can control the fire spreading and pollutants effectively to prevent a disaster.

  • PDF

Estimation of Pollutants Exhausted :From vehicles for Tunnel ventilation Control (터널환기제어를 위한 차종별 오염물 배출량 추정)

  • Hong, Daehie;Kim, Woo-Dong;Kim, Tae-Hyung;Min, Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.110-115
    • /
    • 2002
  • The tunnels built in recent years are equipped with traffic counters and pollution sensors (mostly, CO and Vl sensors). Utilizing these built-in sensors, it is possible to develop an algorithm to estimate the amount of pollutants exhausted from the each class of cars passing through the tunnel. These estimated data can be effectively utilized not only for ventilation control but also for designing ventilation facilities. The diffusion of pollutants in a tunnel can be described with one-dimensional diffusion-convection equation. This equation is approximated with interpolation functions and weighted residual method converting to adequate form for standard state estimate algorithms. With this converted equations, a least square optimization based algorithm is developed, whose outputs are the estimated amounts of pollutants emitted from each class of cars. In order to verify the feasibility of the developed algorithms, simulations are performed with the real data acquisitioned from the Tunnae tunnel located in Young-Dong highway in Korea.

Measurements of Gaseous Pollutants in Major Tunnels in Seoul (서울시 주요 터널내 기체상 오염물질 농도 측정)

  • 김영성;경남호;손재익;문길주;김용표;백남준;김태오
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.320-328
    • /
    • 1993
  • Gaseous pollutants in Namsan Nos. 1, 2, and 3 tunnels and Pukak tunnel were measured along the road by an air-monitoring van from the evening of February 9 to the morning of February 12 in 1993. Average concentrations of pollutants in Namsan tunnels were 9.2-13.5 ppm CO and 0.037-0.047 ppm SO$_{2}$. Average concentrations of SO$_{2}$ in Pukak tunnel was 0.79 ppm, higher than those in Namsan tunnels, due to the traffic of heavy-duty buses and trucks. The pollutant concentrations in Namsan tunnesl could be explained by emission of passenger cars using unleaded gasolin and LPG taxies. Average concentration of NO$_{x}$ in Namsan tunnels was at least 1.1 ppm, estimated from the emission factor of pasenger cars using unleaded gasoline. Pollutant concentrations in Namsan No. 3 tunnel were higher at the exit because of the piston action of air mass in the tunnel provided by the traffic. Fans installed at Namsan and Pukak tunnes could be useful, but their flushing action of ambient air in the tunnel was not clearly observed.d.

  • PDF

Prediction of spatial distribution of air pollutants within tunnel (터널 내 대기오염물질의 공간분포 예측)

  • Park, Il-Gun;Hong, Min-Sun;Kim, Beom-Seok;Kang, Ho-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.607-616
    • /
    • 2012
  • The need for management of tunnel air quality is imminent considering the rapid increase of number and span of tunnels in Korea. To investigate spatial distribution of $CO_2$ within tunnels, $CO_2$ were measured and model simulations were performed in Namsan 1 tunnel. Results show that $CO_2$ concentrations were 250 ppm to 400 ppm higher in the exit than tunnel entrance. Also, $CO_2$ concentrations were 200 ppm to 300 ppm lower inside no ventilating vehicle than in the tunnel. Both experimental and model simulation results show that spatial distribution and concentration gradient of air pollutant inside tunnel are highly dependent on traffic density.

Study on Pollutant Characteristics of Tunnel Cleaning Wastewater and Removal Characteristics of the Pollutants via Settling and Adsorption (터널 세척 폐수 특성 및 분리.흡착 방식에 따른 오염물질 저감 연구)

  • Park, Sang-Woo;Choi, Young-Hwa;Oh, Je-Ill
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.75-82
    • /
    • 2007
  • Washed wastewater generated from the intermittent cleaning process of the three tunnel sites located in the Seoul area showed high concentrations of SS, $COD_{Cr}$, T-N, $NH_3-N$, $NO_3-N$, Zn, Cu, Cr(+6), Mn, Mg, Phenol, $CN^-$ and E-Coli based on the water quality analysis. These characteristics of the deteriorative wastewater depend on the sampling method, cleaning frequency, released amount of washing water, inner material of tunnel wall, traffic volume, and type of drainage systems. Gravitational separation experiment of SS with collected tunnel wastewater showed considerable removal of pollutants such as 80% of $COD_{Cr}$, 30% of T-N and 90% of T-P simultaneously. GAC isotherm test was conducted to remove dissolved portion of the pollutants, and resulted in high removal efficiencies above 80% of $COD_{Cr}$, T-N, Zn, Cu, Mn, Phenol, CN in the experimental condition of GAC dosage of $50g/1/{\ell}$.

  • PDF

Study on Optimization Technique for Design of the Road Tunnel Ventilation System (도로터널 환기시스템 설계 프로그램 개발)

  • 유지오;이동호;신현주
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.60-70
    • /
    • 1999
  • In this study, the computer code for the optimal design of road tunnel ventilation system based on one-dimensional analysis of the air flow was developed. The control volume method was used to calculate the air velocities and the concentration distribution of pollutants(CO, NOx, Particulate) for various tunnel ventilation system. This code was validated by comparing the calculation results to the practical design data for the road tunnel ventilation system. The calculation results were in accord with the practical design data.

  • PDF

Investigate on the rate of change of CO concentration in a tunnel under changed position of the jet fans by using numerical method (제트 팬 가동위치에 따른 장대터널 내 CO 농도 변화율에 대한 전산해석)

  • Min, Jae-Hong;Kim, Dae-Hyun;Chung, Jin-Taek
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2765-2770
    • /
    • 2008
  • The purpose of tunnel ventilation system for long road tunnels is to keep certain levels of Visibility Index and the concentration of CO. Additional equipments such as jet fans are used in road tunnel to discharge pollutants in the road tunnel. The control algorism of tunnel ventilation system takes the value of sensors as input, and then gives the operation method of jet fans in tunnel as output. Information on the variation of CO concentration in tunnel when jet fans are running is needed to minimize their operation time. Numerical analysis is used in this paper because of the difficulty of conducting experiments under standard condition for ventilation of road tunnel. The concentration of CO has been calculated by using 3-dimensional CFD under transient condition with speed of cars, quantity of air ventilation, and the results for various operation position of jet fans are compared.

  • PDF

Simulation and Analysis of Local Ventilation characteristic of Road Tunnel with Ventilation System (환기시스템 적용 도로터널의 국소환기 특성 시뮬레이션 및 해석)

  • 박기림;오명도;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.321-332
    • /
    • 2001
  • In this study, a design program for ventilation requirements of a longitudinal raod tunnel were developed and investigated. The control volume method was applied to calculate the local air velocity and the local concentration distribution of pollutants, CO, $NO_x$, soot along the tunnel for various tunnel ventilation system. This program was validated by comparing with the practical design data for the road tunnel ventilation system. The calculation results were in good agreement with the practical design data.

  • PDF

The Study of Jet Fan Control Logic for Longitudinal Ventilation in Road Tunnel (젯트팬 종류식 터널의 퍼지응용 제어로직에 관한 연구)

  • 유지오;남창호;신현준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.763-770
    • /
    • 2000
  • In tunnel ventilation, the Purpose of ventilation control is to keep the required pollution level with minimum consumption of energy But tunnel ventilation has large disturbances caused by discharge of pollutants, traffic forces especially strong for longitudinal ventilation. Hence in this paper, the tunnel ventilation control logic applying fuzzy control theories is proposed and the simulation program of tunnel ventilation control is developed. The characteristics of longitudinal ventilation with jet fans are estimated and the effect of the proposed tunnel ventilation control is verified by the simulation program.

  • PDF

An appropriateness review on the road tunnel ventilation standards by pollutants site measurement and case study (오염물질 현장측정 및 사례조사를 통한 도로터널 환기기준의 적정성에 관한 연구)

  • Kim, Hyo-Gyu;Baek, Doo-San;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.323-335
    • /
    • 2020
  • In this study, a series of site measurement of particulate and gases pollutants at five tunnels were carried out along with case studies to review the suitability of the current road tunnel ventilation design standards. Previous studies by other researchers have shown that the ratios of the level of measurement to the standard were 27.9%, 1.6% and 3.4% for TSP, CO and NOx, respectively. Those measured in this site study shows even lower ratios; the ratios were 2.6%, 0.8% and 0.3%, for TSP, CO and NOx, respectively. The particle size analysis of TSP for the five tunnels shows that PM10 including tire wear and re-suspended road dust exceeded 20.4%. This implies that non-exhaust particulate matter must be taken into account, since the current design standards for the particulate matter (visibility) include only the engine emission. Based on the recent research results, for vehicle emission rate and slope-speed correction factors, revision of ventilation design standards for pollutants is required. WRA (PIARC) also emphasizes the necessity of the ventilation design standards for pollutants. In addition, enactment of a new road tunnel ventilation system operation standard or guideline is strongly recommended when considering the low operating rate of the ventilation system with jet-fans.