• Title/Summary/Keyword: Tunnel numerical analysis

Search Result 1,168, Processing Time 0.025 seconds

A Study on the Characteristics of Rock Mass by GSI in Limestone Mine (석회석 광산에서의 GSI 분류법에 의한 암반특성연구)

  • ;Kaynnam U. M. Rao
    • Tunnel and Underground Space
    • /
    • v.14 no.2
    • /
    • pp.86-96
    • /
    • 2004
  • Rock mass classification methods such as RMR, Q system and GSl have been widely adopted with certain modifications for the design of mine openings. The GSI system is the only rock mass classification system that is related to Mohr-Coulomb and Hoek-Brown strength parameters and gives a simple method to calculate the engineering properties of rock masses which can be useful input parameters for a numerical analysis. A detailed surveying for GSI mapping as well as far calculating RMR values was undertaken at Daesung and Pyunghae underground limestone mining sites. RQD values were determined for row locations in these two mining sites. Based on GSI values and intact rock strength properties, the rock mass strength modulus of elasticity as well as the Mohr-Coulomb strength parameter c$_{m}$ and $\phi$$_{m}$ were determined. GSI and RMR are correlated.

A Study on the Thermal Performance of an Oil Cooler with Dual-cell Model (듀얼셀 모델을 이용한 오일쿨러의 방열성능 연구)

  • Park, Sang-Jun;Lee, Young-Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1111-1116
    • /
    • 2011
  • Heat exchangers have been used for the automotive, HVAC systems, and other various industrial facilities, so the market is very wide. In general, high-efficiency heat exchangers with louver fins are used in the dust-free environment while heat exchangers with wavy fins are used for dusty environment such as construction site, etc. In this study, numerical analysis has been performed for typical heat exchangers, used as oil coolers or fuel coolers, with dual cell model that can handle different grids for the air-side and oil-side of heat exchangers. First wind tunnel tests were conducted to obtain one-dimensional thermal performance data of heat exchangers. Then, heat release rates with varying air flows were numerically predicted using the three-dimensional dual-cell model. The model can greatly enhance the accuracy of thermal design since it includes the effects of nonuniformity of air flows across heat exchangers.

Suggested Method for Determining a Complete Set of Micro-Parameters Quantitatively in PFC2D (PFC2D 활용을 위한 정량적 미시변수 결정법)

  • Jong, Yong-Hun;Lee, Chung-In
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.334-346
    • /
    • 2006
  • The discrete element code in 2-D, PFC2D, has been used as a tool to simulate various phenomena in rock mechanics and rock engineering. However, the code has an disadvantage that procedure to determine micro-parameters, namely properties of particles and contacts is repetitive and time-consuming. In this study, we analyzed the effect of micro-parameters(for generation of a contact-bonded model) on macro-properties(that were measured numerically by uniaxial compressive test). Based on the analysis, also, the time-saving and reliable method was suggested to determine a complete set of micro-parameters. In order to verify the suggested method, numerical specimens were generated in PFC2D for 10 different rock types at home and abroad. By the two trials for each specimen, in the result, the Young's modulus, Poisson's ratio and uniaxial compressive strength could be reproduced with being in relative error by about 5% to the values obtained by laboratory tests.

Effect of internal angles between limbs of cross plan shaped tall building under wind load

  • Kumar, Debasish;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.24 no.2
    • /
    • pp.95-118
    • /
    • 2017
  • The present study revealed comparison the pressure distribution on the surfaces of regular cross plan shaped building with angular cross plan shaped building which is being transformed from basic cross plan shaped building through the variation of internal angles between limbs by $15^{\circ}$ for various wind incidence angle from $0^{\circ}$ to $180^{\circ}$ at an interval of $30^{\circ}$. In order to maintain the area same the limbs sizes are slightly increased accordingly. Numerical analysis has been carried out to generate similar nature of flow condition as per IS: 875 (Part -III):1987 (a mean wind velocity of 10 m/s) by using computational fluid dynamics (CFD) with help of ANSYS CFX ($k-{\varepsilon}$ model). The variation of mean pressure coefficients, pressure distribution over the surface, flow pattern and force coefficient are evaluated for each cases and represented graphically to understand extent of nonconformities due to such angular modifications in plan. Finally regular cross shaped building results are compared with wind tunnel results obtained from similar '+' shaped building study with similar flow condition. Reduction in along wind force coefficients for angular crossed shaped building, observed for various skew angles leads to develop lesser along wind force on building compared to regular crossed shaped building and square plan shaped building. Interference effect within the internal faces are observed in particular faces of building for both cases, considerably. Significant deviation is noticed in wind induced responses for angular cross building compared to regular cross shaped building for different direction wind flow.

A Study on the Hydrodynamic Effect of Biofouling on Marine Propeller (선박 프로펠러 표면의 생물부착물이 프로펠러 유체역학적 성능에 미치는 영향에 관한 연구)

  • Seo, Kwang-Cheol;Atlar, Mehmet;Goo, Bonguk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.123-128
    • /
    • 2016
  • The effect of propeller surface roughness condition on ship performance is very significant even the influence of fouling on propeller performance is not well established compared to biofouling on the hull surface. In present study, predictions of open water efficiency of propeller are made for three different fouling conditions, and its application is given for the 7m full-scale propeller of a medium-size tanker in open water condition. The numerical predictions of propeller efficiency loss due to fouling are based on the results from laboratory-scale drag measurements and boundary layer similarity law analysis presented in Schultz (2007) together with an in-house unsteady lifting surface code which is an appropriate tool to predict the effect of propeller surface roughness on propeller performance. The results of this study indicate that the subject propeller with the small calcareous fouling ($k_s=0.001$) can lead to as high as 15 % loss at the propeller operating condition (J=0.5) and the loss of propeller efficiency due to fouling should be evaluated while the ship is operating.

A study on the effective fire and smoke control in transverse oversized exhaust ventilation (횡류식 선택대배기환기에서의 배연특성에 관한 연구)

  • Han, Sang-Pil;Jeon, Yong-Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.451-462
    • /
    • 2011
  • The smoke control system plays the most important role in securing evacuation environment when a fire occurs in road tunnels. Smoke control methods in road tunnels are classified into two categories which are longitudinal ventilation system and transverse ventilation system. In this study it is intended to review the characteristics of smoke behavior by performing numerical analysis for calculating the optimal smoke exhaust air volume with scaled-model and simulation when a fire occurs in tunnels in which transverse ventilation is applied, and for obtaining the basic data required for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions for various conditions. As a result of this study, when the critical velocity in the tunnel is 1.75 m/s and 2.5 m/s, the optimal smoke exhaust air volume has to be more than $173m^3/s$, $236m^3/s$ for the distance of the smoke moving which can limit the distance to 250 m. In addition, in case of uniform exhaust the generated smoke is effectively taken away if the two exhaust holes near the fire region are opened at the same time.

Disturbed State Modeling for joints of Rock(Theory and Implementation) (암반절리에 대한 교란상태 모델링 (이론과 응용))

  • 박인준;전석원
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.200-208
    • /
    • 1998
  • This research is intended to investigate the behavior of the jointed rock under various loading conditions: static or dynamic load. The distributed state concept (DSC) is based on the idea that the response of the joint can be related to and expressed as the response of the reference states : relative intact (RI) and fully adjusted (FA) states. In the DSC, an initially RI joint modifies continuously through a process of natural self-adjustment, and a part of it approaches the FA state at randomly disturbed locations in the joint areas. In this study, based on the DSC concept, RI state, FA state, and disturbance function (D) are defined for characterizing the behavior of rock joint. From the results of this research, it can be stated that DSC model is capable of capturing the physical behavior of jointed rock such as softening and hardening and considering the size of joint and roughness of joint surface.

  • PDF

Experiment and Evaluation of Mist Diffusion from Water Tube for Blasting Dust Control in accordance with the Explosives Position (폭약 기폭위치에 따른 발파 분진제어용 워터튜브 주입수의 분무확산 실험 및 평가)

  • Yang, Hyung-Sik;Ko, Young-Hun;Kim, Jung-Gyu;Noh, You-Song;Park, Hoon;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.46-55
    • /
    • 2015
  • A water tube with detonating cord was devised to control the blast dust. Water diffusion experiments with different detonating cord positions were conducted during the series of experiments to optimize the design parameters of the tube. Images from high speed camera were analyzed to evaluate the results. AUTODYN program was adopted to simulate the diffusion process of water and compared with the images. Diffusion of water shows cross flow in case of external charge while the internal case shows radial flow. A bubble ring was formed during the numerical analysis of internal charge case as occurred in underwater blast. An additional bubble ring was formed by the reflection pressure from the ground. And the Weber number was determined as sufficient for spray atomization performance of the water tube.

Numerical Study on Characteristics and Control of Heading Angle of Floating LNG Bunkering Terminal for Improvement of Loading and Off-loading Performance

  • Oh, Seunghoon;Jung, Dong-Woo;Kim, Yun-Ho;Kwak, Hyun-Uk;Jung, Jae-Hwan;Jung, Sung-Jun;Park, Byeongwon;Cho, Seok-Kyu;Jung, Dongho;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.77-88
    • /
    • 2020
  • In this study, heading characteristics and heading control performances were evaluated to achieve the wave shield effect. The wave shield effect originating from heading control reduces the relative motions of moored vessels in a floating liquefied natural gas bunkering terminal (FLBT). Therefore, loading and off-loading performances are improved through reduced relative motion. For the objective of this study and efficiency of the analysis, a simplified model was used that assuming no relative motion of the moored vessels in the FLBT. The simplified model involved modeling the environmental loads and inertia of several floating bodies, including FLBT, into the environmental loads and inertia of a single vessel. The simplified model was validated through comparisons with model tests. With the simplified model, heading characteristics and heading control simulations were performed using low-frequency planar motion equations. The heading characteristics and heading control performances of FLBT were analyzed through the results of simulations under the expected environmental conditions. The capacity of the tunnel thrust for the heading control performance was confirmed to be adequate for improvement of the loading and off-loading performances using the wave shielding effects under the operation conditions.

Validation of Rotor Aeroacoustic Noise in Hovering and Low Speed Descent Flight (정지 및 저속 하강 비행하는 헬리콥터 로터의 소음 해석 및 검증)

  • You, Younghyun;Jung, Sung Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.516-525
    • /
    • 2015
  • In this paper, the acoustic pressure of a helicopter rotor in hovering and low speed descent flight is predicted and compared with experimental data. Ffowcs Williams-Hawkings equation is used to predict the acoustic pressure. Two different wind tunnel test data are used to validate the predicted results. Boeing 360 model rotor test results are used for the low-frequency noise in hover, and HART II test results are employed for the mid-frequency noise, especially BVI noise, in low speed descent flight. A simple free-wake model as well as the state-of-the-art CFD/CSD coupling method are adopted to perform the analysis. Numerical results show good agreement against the measured data for both low-frequency and mid-frequency harmonic noise signal. The noise carpet results predicted using the FFT(Fast Fourier Transform) shows also reasonable correlation with the measured data.