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Disturbed State Modeling for Joints of Rock (Theory and Implementation)

Inn-Joon Park and Seok-Won Jeon

ABSTRACT This research is intended to investigate the behavior of the jointed rock under various
loading conditions: static or dynamic load. The distributed state concept (DSC) is based on the idea that
the response of the joint can be related to and expressed as the response of the reference states :
relative intact (RI) and fully adjusted (FA) states. In the DSC, an initially RI joint modifies continuously
through a process of natural self-adjustment, and a part of it approaches the FA state at randomly
disturbed locations in the joint areas. In this study, based on the DSC concept, RI state, FA state, and
disturbance function (D) are defined for characterizing the behavior of rock joint. From the results of
this research, it can be stated that DSC model is capable of capturing the physical behavior of jointed
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rock such as softening and hardening and considering the size of joint and roughness of joint surface.

Key words : back analysis, constitutive relations, dynamics, joint, numerical modeling
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1. Infroduction

Joint of rock has been the topic of extensive
laboratory researches for a long time (Amonton,
1699; Coulomb, 1785). As results, several models
have been developed for defining the behavior of
joint. There are two types of joint models : failure
model and elasto-plastic model.

1.1 Failure models
Failure models describe the shear stress in

relation to the normal stress and other parameters.

This relation is generally nonlinear as long as the
range of the normal stress is wide enough. Usually,
the shear stress reaches a peak value and then
decreases to a residual value. This phenomenon is
termed softening as found in most rocks (Goodman,
1974; Hoek and Bray, 1974). In failure models,
emphasis is focused mainly on the modeling of
peak and residual shear stresses.

o E5FUS HAE QS

FANeE A TR A ANFRE A

D 439, A
4

2) B3], Aot
Q)7+ A)

200



Amonton(1699) proposed the earliest friction
law, that is, the friction stress, T, is proportional
to the normal stress, 6,, applied,;

T= 0, (1

where I is the proportionality constant termed

friction coefficient, which is also expressed as :
[=tan ¢ (2)

where ¢ is called the friction angle of the surface.
Coulomb's law(1785) gives a better description of
friction by introducing a cohesion interception c.
Patton(1966) proposed a model based on a series
of tests on the “saw-tooth” shaped artificial joints.
The peak shear strength is assumed bilinear.
Barton and Chouby(1977) proposed a model for
peak shear strength of rock joints after summariz-
ing extensive tests upon specially prepared
artificial rock joints. The peak shear strength was
expressed as

T, = Ontan [JRClog [ Ies ]*‘%} (3)

On

where JRC and JCS are the Joint Roughness
Coefficient and dJoint Compression Strength
respectively, and ¢, is the residual friction angle.
Schneider(1975) modified Patton's bilinear model
by combining the angle of asperities of natural
rock joints.

Most failure models described above attempt to
relate the shear strength of a rough joint with
the slope angle or the shear strength with the
strength of the asperities. However, failure models
do not give the description of the stress-strain
relationship which is necessary for calculations
other than the
strength of the joints. The elastic and elasto-plastic

involved with displacements

models are capable of providing the stress-strain

relationship as discussed below.

1.2 Elastic and elasto-plastic models
Goodman, Taylor, and Brekke(1971) proposed a
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nonlinear model for rock joints. This model has the
off-diagonal terms of the stiffness matrix which are
considered as the coupling terms between the
shear and normal behavior. Ghaboussi and Wilson
(1973) proposed the possible application of the
plasticity theory in joint modeling by assuming the
associative flow rule. The yield functions used are
the Mohr-Coulomb failure law for non-dilatant
joint, and the Cap (DiMaggio and Sandler, 1971)
model of yield functions for dilatant joint.
Zienkiwicz et al. (1977) proposed an elastic-
viscoplastic model for joint. The yield function
F used is the Mohr-Coulomb failure law. Both
associative and non-associative potential function
Q has a similar type as the yield function. Plesha
(1987) proposed a non-associative plasticity joint
model. The main feature of this model is to use a
parameter called the asperity angle to characterize
the strength and deformation behavior of the
joint. At the same time, Desai and Fishman(1987)
developed a non-associative plasticity model by
specializing a general 3-D Hierarchical Single
Surface model (HiSS Model) (Desai et al., 1984,
1986). The yield function F and the displacement

potential function Q are expressed as
F=12+a0o.-yai=0 €Y
Q=12+0n0,—-Y07=0 (5)

where n and y are material constants, o is the
hardening function, and o4 is the non-associative
hardening function. This model can be used for
both quasi-static and cyclic loading conditions.
However, softening can not be captured.

In this research, a modified version of Disturbed
State Concept (DSC) model (Desai, 1992; Desai,
1995; Rigby and Desai, 1995; Park, 1997) is
proposed to model! both hardening and softening
behavior with a framework that can include a

number of important characteristics of joints.

2. Disturbed sate concept modeling for
joint



202

The disturbed state concept (DSC) extends
continuum theory representations of material
behavior to include observed nonhomogeneous and
discontinuous behavior such as microcracking,
damage, and softening. It is based on the DSC that
allows incorporation of microstructural changes due
to the applied forces, that cause transitions in the
material from relative intact (RI) state, through a
process of natural self adjustment, to the fully
adjusted or critical (FA) state. The process of
transition from the RI to FA state involves changes
in the microstructural properties of the joint
material, affected by factors such as roughness,
asperities, particle size and shape, and inter-
particle characteristics. The observed material
behavior is thus defined as a combination of the
two material reference states, RI state and FA
state, which are related through the disturbance
function, D (Fig. 1). The concept of the disturbed
state of a joint can be expressed by the two
reference states (RI and FA) and D.

The disturbed state for a joint is the intermediate
state from the original state until the critical state
is researched. During the disturbed state, the
damageable material and non-damageable material
co-exist. From the DSC theory for a joint material
(Desai, 1995), the damageable material represents
those asperities that are broken or lose contact
during shearing, and those contacts that are
separated by the debris. The non-damageable

A Intact behavior (Ri) [
./ﬂr’“’
o
D
Observed behavior

Critical

State(FA) \
D=0

Fig. 1. Schematic of Stress-Strain Behavior (after
Park, 1997)
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Fig. 2. A Variety of Versions of DSC Models (after
Desai, 1992)

material represents those asperities that are not
breakable for the given normal stress, and would
include plateaux formed and compacted gouge
material formed during shearing. Consequently,
strain softening may result if the joint becomes
smoother.

The RI state material of a joint can be defined as
a contact that keeps its original contact property
before being damaged or losing contact. The RI
material is described using continuum models
that may be based on linear or nonlinear elasticity,
elastoplasticity, viscoplasticity, and thermovisco-
plasticity (Fig. 2).

The FA state can be modelled assuming the
material that carries hydrostatic stress and shear
stress like a constrained viscous liquid. The joint is
said to be at the FA state when, at large shear dis-
placements, both the dilation and shear resistance
of a joint reach their stabilized values under a
certain normal load.

Incorporating the RI and FA states, the coupled
(observed) response can model softening behavior,
anisotropic effects, and progression of damage.

To best describe the various references states
for jointed rock, a simple example is presented
herein. Consider a bucket filled with ice. When
heated, the ice will thaw into water. The ice
represents the material in its original state or RI
state, while the water represents the material in
FA state, and heating is the factor that causes
the disturbance, D. During the period starting
from ice (RI state) and ending with water (FA



state), there are many intermediate states where
the container includes both ice and water. These
intermediate states are said to be in the disturbed
state. During the disturbed state, the ice gradually
changes to water and there exists a mixture of ice

and water.

2.1 ldealization of a joint

A joint is the region of two opposing surfaces of
two contacting solids. The physical properties of a
joint are determined by these two surfaces and
their contact conditions. To mathematically model
a joint or interface, the joint is usually considered
as a planar surface with two joint walls and a
contact space (Fig. 3). Here, the contact space is
the contact zone of the opposing asperities and it
can be assigned as averaged thickness t. A coor-
dinate system can be established where the planar
surface is considered; the tangential direction with
shear stresses 1, and relative shear displacements
u’, and the direction orthogonal to the planar sur-
face is the normal direction with normal stresses a.,
and relative normal displacement v'. If T and N
are the tangential and normal forces applied (Fig.
3), and A, is the nominal joint area, then the

normal and shear stresses are :

T

T=— (6)
Ag
N

o= — (7N
Aq

Natural joint Idealized joint

Fig. 3. Idealization of a Joint
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The relative shear displacement u’, in contact
zone is composed of elastic shear deformation of
the contact asperities u®, plastic shear deformation
of the contact asperities u®, and slip displacement

between the contact asperities of the joint, u°®
U =uc+uP+us (8)

In an analogous manner, the relative normal

displacement, v', can be defined as
VI =ve+vP+ys 9

If small strains are assumed, the joint thickness,
t, can be used to convert relative displacements into
equivalent strains. As t— 0, the in-plane strain &,
—0 and can be negligible (Sharma and Desai,
1992). In view of this, the in-plane stress, o,, will
also be small and can be negligible, particularly
when the Poisson's ratio, v, is small. In terms of
two-dimensional idealization, the strain-displace-

ment relations are

& 0
[En] = [Vr/t} (10)
Y u/t

and the related stress components are

o 0
o, |= | N/A, (11)
T) | T/A

2.2 Description of the Rl state

The relative intact state is described using the
modified HiSS §, model (Desai and Wathugala,
1987). The & model is based on the associative
plasticity and
function Q=yield function F) rule. In this model,
the yield function, F, is given as:

isotropic hardening (potential

F=7+00,—-Y02 (12)

where 1T is the shear stress, 6, is the normal
stress, and n and y are material parameters. o is

the hardening function and it is expressed as

o (13)

=
B
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Fig. 4. The Yield Surface of HiSS 3§, Model in
\3,, -1, Space

where a and b are material parameters and

trajectory of plastic shear strain, &p, is given as :

&=[1d7] (14)

The yield surface F is a continuous set of
convex surface which expands toward an ultimate
yield surface during plastic shear deformation.
The ultimate surface, T.., which represents the
asymptotic failure stress, is found by setting o

equal to zero :
Ta =N 70, (15)

This plots a straight line with slope Vy as
shown in Fig. 4. The locus of points expanding
yield surface (where the tangent to the yield
surface is parallel to the o, axis) is a line called
the “Phase Change Line’. By taking F=0 and

oF =0, Eq. (12) reduced to
00Oy
T n-2
X y[ - ] 16)

The phase change line also plots as a straight

line with slope "\ ¥ 1 in 1 vs. o, space (Fig. 4).

n
2.3 Description of the FA state

The critical state is a steady state where the

shear stresses and normal displacement are

stabilized. The joint model at the critical state
consists of two parts : the modeling of the critical
shear stress and the modeling of the critical
dilation. The failure model proposed by Archard
(1958) is a simple one yet it gives a very good
description of the shear stress at the critical state.
Archard’'s non-linear power law model can be

expressed as follows :
°=Cy0n an

where C, and m are material parameters and the
superscript ¢ refers to the critical condition. And
the final dilation at the critical state, v*, is found to
have a relation with the normal stress (Schneider,
1975), as

ve=vlexp(—kOy) (18)
where v’ is the maximum dilation when o, is
equal to zero and k is a material parameter.

2.4 Description of DSC function

The disturbance function can be defined as

M,

D 19)
where M,° is the mass of solids in the FA state
and M, is the total mass of solids present.
Initially with no disturbance the material is
assumed to be entirely in the RI state, so D is zero.
With full disturbance the material is assumed to
be fully in FA state, and at an ultimate state, D,.
Theoretically, the disturbance, D, varies between 0
and 1, but many materials fail in an engineering
sense before D reaches unity.

The proposed function for D (scalar) employed
in this research was used by Armaleh and Desai
(1990) :

D=D,[1—-exp(~AEZ)] 20)

where D, is the ultimate disturbance and will be
assumed to be unity for rock joint, A and Z are
material parameters. This disturbance function will



A and Z parameters
are increased

&olN)
Fig. 5. Schematic of DSC Function (after Park, 1997)

be used twice to define a shear stress relationship
using disturbance, D., and an effective normal
stress relationship using disturbance, D,. Each
curve in Fig. 5 is a representation of Eq. (20).

back

3. Incremental formulation for

prediction program

3.1 Derivation of the intact incremental stress-
strain relation

Derivation of the intact incremental stress-
strain relations follows the traditional elasto-
plasticity formulation procedure (Desai and
Wathugala, 1987). Let the following vectors be
defined

{do}= {dd‘;"} (21)
{de}= {‘ffy} 22)

From the elastic stress-strain relationship and
the flow rule for plasticity, an incremental form
of the intact stress vector can be found as

{do'}=[C"]({de}-A{nF}) (23)
where [ C°] is the elastic constitutive matrix and

is given by,

. |tke ©
[c ]={ 0 tks} 24)
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where k, and k., are the normal and shear
stiffness of the interface material. And employing
the consistency condition of the yield function (dF
=0), A can be found as

{35} 1craey

g

GNTTIE JF )
{3} 1030

and substituted into Eq. (23) to yield the con-

stitutive relationship desired,
{do'}=[C*"]{de} (26)

where the elasto-plastic matrix takes the form

[ aF e

[C ]{'a-(;}{“F}T[C 1

[C*1=][C"]- oF 1° oF

—_ € Fi_ -

Eraacaltis
m Cat
“lcece @7)
where L is defined as

L= da <nf>=—ablp'<nf> (28)

9Sp

for the hardening function defined in Eq. (13)
where < > are McAuley's brackets.

<nf>=0fornf<0

<nf>=nf for nf>0

(29)

3.2 Derivation of the DSC incremental stress
equation

Assuming the thickness of joint is the same for
all three material phases, equilibrium of forces in
the disturbed material, and the definition of
disturbance in Eq. (19), the following relationship

between phase stresses can be derived

o 1-Du)oil| , [Duoy
{(;" } = {((1 —DT))(‘;ri } * {D;“} B0
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where D, and D, are defined using Eq. (20). The
normal disturbance function, D,, can be used to
model the relative normal displacements and D,,
is the disturbance function for relative shear
displacements.

Differentiating Eq. (30),

dog
dt*
_ J(1-Dn)doi Dnd oy (6n—0i)dDy
= { (1-D)d7 { YD d7 (7] (r°-7)dD, [ BV
If there is no change in stresses at FA state,
do,’ and dt° are zero. Substituting Egs. (17), (26),

and (27) into Eq. (31) gives the DSC incremental

stress-strain equations,

doy | _ J(1-Da)(Cmydei+Cridy) |
d7' [ T 1 (1-D,)(CF dei+C L dy)

(0s—0ci)dD,
{ (TC—Ii)dDT } (32)
and
{d()'a}=[CDSF]{d£}+{dD(0'C—0'i)} (33)

where the term {dD(6°-6')} contributes negative
values during softening and [C™°] is DSC

constitutive matrix.

4. implementation of the DSC
model

joint

With the advancement of numerical procedures
such as the finite element method, rock joints
have been represented by various types of two-
and three-dimensional elements. In this research,
the two-dimensional joint element is represented
by thin-layer interface element (Desai et al, 1984)
with four noded isoparametric solid element.

A constitutive model, such as the DSC joint
model proposed above, can be adapted from Eq.
(33) where [C™”] is the element DSC joint

constitutive matrix at local coordinate level. Eq.

(33) becomes
{dd"}=[CPS[{de} +{dD (0" -0a")} (34)

Formulation at the local coordinate system
involves definition displacements, {u}, at any

point within the element, as

{u}=[N]{q} (35)

where [N is the shape function matrix and {q}
is the vector of nodal displacements for the element.
Using the isoparametric concept, the incremental

strain vector can be written as
{de}=[B] {dq} (36)

where [B] is the incremental strain-nodal dis-
placement transformation matrix for an element. It
is obtained by differentiating and combining rows
of the matrix [N ].

In many joint boundary problems, the local
coordinate system of the joint element is inclined at
an angle, ¢, with respect to horizontal in the global
system. The transformation of the element strain
and stress vectors to global vectors (indicated by

using an overbar) are given by,

{de}=[B]{de} 37

{do }=[B"]{do"} (38)
0 cos¢sing —cos ¢sin ¢

[Bl=]0 (coso) cos ¢sin ¢ (39
0 -2 cos ¢sin ¢ (cos @)’ —(sinp)?
0 cos¢sing —2cos¢@sing

[B'1=]0 (cos¢) 2 cos ¢sin ¢ (40)

0 —cos ¢sin ¢ (cos Py’ —(sin ¢)?

Assume the continuum is discretized into an
assemblage of “m” distinct finite elements. The
basic finite element equilibrium equation is written
as a sum of the integrations over each element and

can be written as



Table 1. DSC Joint Parameters

Category Parameter Comments
E Young's Modulus
v Poisson's Ratio
n Phase Change Parameter
RI Ultimate P te
Material Y tmate Farameter
a Hardening Parameter
a
o=—
b &
FA .
Material Co Critical Parameter
DSC _ A% Dy=[1l-exp(-A&y)]
Function A 7 D,=[1-exp(-AE )]

Z m [-[V(m)[B(m)]T{da?;)}dV(m)]:2{0} 41
where {d 6°} is given by

{dd"}=[BI[CPI[B]"{de } (42)

and {Q} is a generalized load vector.
5. Model parameters

The proposed joint model involves a number of
material constants which can be determined from
a series of shear tests on joints or interfaces. The
material constants can be divided into three
categories : parameters for RI material, the
constants for FA material, and the disturbance
function parameters. The material constants are
all listed in Table 1. There are eleven parameters
needed for the DSC joint model.

6. Conclusions

The disturbed state modeling provides a
powerful way of describing the behavior of joints
and interfaces. It is based on the assumption that
the behavior of a joint, or the behavior at the
disturbed state can be expressed by the joint
behavior at its reference states.
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The reference states include the RI state and
FA state. Basic models can be used to describe
the simple behaviors at the reference states and
the complex behavior at the disturbed state can
be described by using the DSC joint meodel.
Different models can be developed to describe
various behaviors if different models are used for
the material behaviors at the RI and FA states.

In this study, the behavior of RI state is
modeled by using a HiSS §, model with a small
modification. The FA state is modeled according
to the observations from the shear tests of joints.
The DSC joint model based on two reference
states thus developed is capable of describing the
hardening and softening behavior of a joint under
various stress paths.

The model can be easily implemented in finite
element procedures and requires a realistic
number of parameters for general use. Finally,
this model is capable of capturing essential rock
joint behavior including strain softening and
hardening, relative motion, and dependence on

the initial stress condition and loading history.
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