Disturbed State Modeling for joints of Rock(Theory and Implementation)

암반절리에 대한 교란상태 모델링 (이론과 응용)

  • 박인준 (연세대학교 토목공학과) ;
  • 전석원 (서울대학교 지구환경시스템공학부)
  • Published : 1998.09.01

Abstract

This research is intended to investigate the behavior of the jointed rock under various loading conditions: static or dynamic load. The distributed state concept (DSC) is based on the idea that the response of the joint can be related to and expressed as the response of the reference states : relative intact (RI) and fully adjusted (FA) states. In the DSC, an initially RI joint modifies continuously through a process of natural self-adjustment, and a part of it approaches the FA state at randomly disturbed locations in the joint areas. In this study, based on the DSC concept, RI state, FA state, and disturbance function (D) are defined for characterizing the behavior of rock joint. From the results of this research, it can be stated that DSC model is capable of capturing the physical behavior of jointed rock such as softening and hardening and considering the size of joint and roughness of joint surface.

외부로부터 정적 혹은 동적 하중을 받는 암반절리의 거동특성을 규명하기 위해서 교란상태 개념(Disturbed State Concept, DSC)을 이용한 구성방정식 이론과 이 이론을 수치해석에 적용하기 위한 응력-변형률 관계식을 소개한다. 본 연구에서 제안한 DSC 이론은 변형준인 암반절 리가 상대적으로 손상되지 않은 상태(Relative Intact; RI)와 완전 파괴된 상태(Fully Adjusted; FA)의 혼합으로 표현될 수 있다는 가정에 기초를 두고 있다. 여기서 사용된 두가지 상태, 즉 RI 상태와 FA 상태는 암반절리의 파괴정도를 나타내는 지표가 된다. 이러한 가정을 기초로 임의의 하중을 받는 절리는 초기 RI 상태에서 점진적으로 재료 내부의 미세구조 조정기능을 거치면서 최종적으로 파괴가 발생하는 FA 상태로 진행한다. 본 연구에서는 RI 상태, FA상태 그리고 재료의 파괴정도를 나타내는 교란도 함수(D)를 해석적으로 정의하여 암반절리의 역학적 거동특성을 표현하기 위한 응용화를 시도하였다. DSC모델은 암반절리의 경화 및 연화특성을 표현할 수 있으며, 절리의 크기 및 표면의 거침도 등을 고려할 수 있다.

Keywords

References

  1. De la resistance caus'ee dans les machines:Memories de l'Academie Royale Amonton, G.
  2. Proc. Roy. Soc. London, A v.243 Elastic Deformation and the Law of Friction Archard, J.F.
  3. Rock Mechanics v.10 The Shear Strength of Rock Joints in Theory and Practice Barton, N.R.;Chouby, V.
  4. Mem. Math. Phys. Aad. Sci. v.10 Theorie des Machines Simples Coulomb, C.A.
  5. Continuum Models for Material with Microstructure Constitutive modeling using the disturbed state as microstructure self-adjustment concept Desai, C.S.;H.B. Muhlhaus(ed.)
  6. Report, Department of Civil Engineering and Engineering Mechanics, University of Arizona The disturbed state as transition through self-adjustment concept for modeling mechanical response of materials and interfaces Desai, C.S.
  7. Proc. 28th US Symp. Constitutive Models for Rocks and discontinuities (Joints), Rock Mechanics Desai, C. S.;Fishman, K. L.;Farmer, L.W.(et al.)(ed.)
  8. J. of Eng. Mech. Div. v.110 no.9 Constitutive Model for Geologic Materials Desai, C. S.;Fraque, M. O.
  9. Int. J. for Num. and Analyt. Mech. in Geomech. v.10 no.3 A Hierarchical Approach for Constitutive Modeling of Geologic Materials Desai, C.S.;Somasundaram, S.;Frantziskonis, G.
  10. Workshop on Implementation of Constitutive Laws of Engineering Materials Hierarchical and unified models for solids and discontinuities (Joints/Interfaces), Short Course Notes Desai, C.S.;Wathugala, G.W.
  11. J. of Eng. Mech. Div. v.97 no.EM3 Material Model for Granular Solis DiMaggio, F.L.;Sandler, I.S.
  12. J. of Soil Mech. and Found. Div. v.99 no.SM10 Finite Element for Rock Joints and Interfaces Ghaboussi, J.;Wilson, E.L.
  13. Proc. 3rd Cong. Int. Soc. of Rock Mech. v.1 The Mechanical Properties of Joints Goodman, R.E.
  14. J. of Soil Mech. and Found. Div. v.94 no.SM3 A Model for the Mechanics of Jointed Rock Goodman, R.E.;Taylor, R.L.;Brekke, T.L.
  15. J. of Min. and Metallurgy Rock Slope Engineering Hoek, E.;Bray, J.
  16. Ph. D. Disseration , Department of Civil Engineering and Engineering Mechanics, University of Arizona Disturbed state modeling for dynamic and liquefaction analysis Park, I.J.
  17. Proc. 1st Int. Cong. of Rock Mech. v.1 Multiple Modeling of Shear Failure in Rock Patton, F.D.
  18. Int. J. for Num. and Analyt. Mech. in Geomech. v.11 Constitutive Models for Rock Discontinuities with Dilatancy and Surface Degradation Plesha, M.E.
  19. Report, Department of Civil Engineering and Engineering Mechanics, University of Arizona Testing, modeling, and application of saturated interfaces in dynamic soil-structure interaction Rigby, D.B.;Desai, C.S.
  20. Proc. 3rd Cong. Int. Soc. Rock Mech. v.2 Rock Friction-A Laboratory Investigation Schneider, H.J.
  21. J. of Eng. Mech. Div. v.118 no.12 An Analysis and Implementation of Thin-Layer Element for Interface and Joints Sharma, K.G.;Desai, C.S.
  22. Int. J. for Num. and Analyt. Mech. in Geomech. v.1 Time Dependent Multiaminate Model of Rocks - A Numerical Study of Deformation and Failure of Rock Masses Zienkiwicz, O.C.;Pande, G.N.