• Title/Summary/Keyword: Tunnel lining temperature

Search Result 52, Processing Time 0.031 seconds

Field Test of Tunnel Lining Temperature Variation Using Insulation Material (단열재를 활용한 터널라이닝 온도변화 현장 실험)

  • Jin, Hyunwoo;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.4
    • /
    • pp.11-16
    • /
    • 2019
  • The low temperature and temperature difference (variation) may cause to deteriorate the integrity of tunnel constructed in cold region. An insulation material was developed and applied to the tunnel lining surface to keep the temperature of tunnel lining constant in spite of temperature variation at outdoor. The lining surface where the insulation material applied showed the less sensitive to temperature variation than non-applied lining surface.

Field Test of Tunnel Lining Temperature Variation due to Heating Element Attached to Tunnel Lining Surface (터널라이닝 표면에 부착된 발열체로 인한 라이닝의 온도변화 현장실험)

  • Jin, Hyunwoo;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.4
    • /
    • pp.17-21
    • /
    • 2019
  • In the cold region, the frozen damages in highway tunnels and regular road tunnels have widely been investigated and reported, but the measurement has not been sufficient made. The average temperature in cold region is below the zero, resulting in that the damage due to freezing at the entrance/exit of tunnel is more severe than in the middle of tunnel. In this study, a heating element was developed to prevent the tunnel lining from being frozen by enforcing to increase the temperature of tunnel lining. Then field tests using the developed heating element were performed and it was ensured that the temperature of tunnel lining increased after a certain time.

Analysis of Temperature Change of Tunnel Lining with Heating Element (발열체가 적용된 터널 라이닝 내부 및 배면의 온도변화 분석)

  • Jin, Hyunwoo;Kim, Teasik;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.5-12
    • /
    • 2017
  • The damage of the tunnel lining on the cold regions can be represented by cracks and leaks caused by freezing of ground water. However, domestically, the relevant construction guidelines are not provided so far. Thus, in this research, the mechanical behavior and thermal conductivity of designated tunnel area are measured using instrumentation system installed in the lining concrete inside tunnels in order to analysis their behavior with regard to temperature variations. Previous research mainly focused on the effect of temperature on the tunnel lining based on the air and initial ground temperature at urban regions. Thus, this study analyzes effects of air temperature and initial ground temperature of designated tunnel area at the cold regions. The temperature of the groundwater at the backfill of the tunnel lining are analyzed to evaluate the heating element. Numerical analyses are performed to evaluate the heating element with regard to the various initial ground temperatures.

Experimental Study on Internal Temperature Change Induced by Heating Element Attached to Tunnel Lining Surface (터널 라이닝 표면에 부착된 발열체로 인한 내부 온도 변화의 실험적 연구)

  • Jin, Hyunwoo;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.11
    • /
    • pp.35-40
    • /
    • 2017
  • The rearside of concrete lining of tunnels constructed in cold region might experience on freezing due to the low temperature. This causes damage of concrete lining resulting in adverse affect on the durability as well as integrity of tunnel structure by causing damage to the concrete lining. In order to prevent the rearside of tunnel lining from freeing, the temperature change inside the concrete lining was measured by attaching a heating element to the tunnel lining surface and generating heat for a certain period of time. A special freezing chamber was developed to conduct the experiments considering in-situ environment. The carbone nanotube (CNT) was used as a heating element in this study. The temperature distribution of the concrete lining was measured by applying the heat to the heating element. The effect of the outside temperature and heating duration were analyzed.

A Study on Current Extent of Damage of Road Tunnel Lining in Cold Regions (Gangwon-do) (한랭지역(강원권)에서의 도로터널 라이닝부 피해 현황 연구)

  • Jin, Hyunwoo;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.49-58
    • /
    • 2017
  • Due to low annual average temperature, road tunnel lining in domestic cold region (Gangwon province) experiences durability problems. The financial and human damage due to cracks, breakout, exfoliation and water leakage increases every year. However, domestic research on effect of temperature on road tunnel lining damage is insufficient. Thus, this research has investigated 70 tunnels located in cold region (Gangwon-do) to analyze damage status. Furthermore, by contrasting damage on tunnels in relatively warm Gangneung area with those in relatively cold Hongcheon area, the effect of temperature on road tunnel lining damage was analyzed.

A study on the design of tunnel lining insulation based on measurement of temperature in tunnel (터널 온도계측을 통한 라이닝 단열 설계에 관한 연구)

  • Kim, Dea-Young;Lee, Hong-Sung;Sim, Bo-Kyoung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.4
    • /
    • pp.319-345
    • /
    • 2011
  • In case of tunnels in cold regions, a freeze of groundwater around tunnel may act as a barrier of tunnel drainage in winter, or may cause the inner extrusion of lining. In spite of that, a design of insulation for preventing the frost damage of tunnel lining has not been introduced in Korea, while foreign countries such as Norway and so on have a standard on insulation. In this study, a few freezing cases of road tunnels have been reviewed, and the results show that the freezing protection is necessary. In order to characterize the thermal distribution in the tunnel, following measurements have been performed at Hwa-ak tunnel; the temperature distribution by longitudinal lengths, the internal temperature of lining and the temperature distribution of the ground under pavement. From these measurements, the characteristics of the tunnel's internal temperature distribution due to temperature change in the air has been analyzed. Based on the measurement results on the temperature distribution at Hwa-ak tunnel, thermal flow tests on the rock specimen with and without insulation have been performed in the artificial climate chamber to investigate the performance of the insulation. Also, a number of 3D numerical analyses have been performed to propose appropriate insulation and insulation thicknesses for different conditions, which could prevent the frost damage of tunnel lining. As a result of the numerical analysis, air freezing index of 291$^{\circ}C{\cdot}$ Hr has been suggested as the threshold value for freezing criteria of groundwater behind the tunnel lining.

Concrete Lining Behaviors of Subway Tunnels according to Temperature Variations (온도변화에 따른 지하철 터널의 콘크리트 라이닝 거동)

  • Yoo, Ji-Hyeung;Lee, Seung-Won;Kim, Dae-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.6
    • /
    • pp.410-414
    • /
    • 2014
  • In this study, the behavior of urban subway tunnels is measured using instrumentation sensors installed in the lining concrete inside subway tunnels in order to analyze their behavior according to temperature variations. It is observed that the stresses of the concrete lining, tunnel convergence, and cracks change according to the temperature variations. However, the crack deformation differs depending on the size and status of the crack. In addition, this study proposes a correction formula for the lining stress and tunnel convergence through numerical analyses of the concrete lining according to the temperature variations. The results of this research can be used in the tunnel maintenance considering the tunnel behavior depending on the temperature variations in the tunnel.

Evaluation of durability performance for maintenance of tunnel structures due to repeated freezing and thawing

  • Jai-Wook An;Joon-Shik Moon;Hong-Kyoon Kim
    • Geomechanics and Engineering
    • /
    • v.38 no.6
    • /
    • pp.593-601
    • /
    • 2024
  • In this paper, the quantitative evaluation method is presented for the durability performance of mountain tunnel concrete linings experiencing freezing and thawing during winter season. To analyze the freeze-thaw characteristics of lining, the freezing time of the concrete lining was measured by the outside temperature. The heat flow analysis was conducted based on the freezing time measured through the indoor experiment, and based on this, the energy required to freeze the concrete lining by the temperature of the outside air could be analyzed. In addition, the temperature change during the winter season was measured through an instrument installed on the actual tunnel concrete lining, and based on the results of indoor and field experiments, criteria for freeze-thaw environment evaluation and progress evaluation were prepared. Also, an equation using the freezing index was proposed through regression analysis.

A study on the cracking of tunnel lining by measurement and numerical analysis (계측 및 수치해석을 통한 터널 라이닝의 균열 원인 연구)

  • Hwang, Hak;Jung, Hun-Chul;Kim, Yu-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.33-40
    • /
    • 2001
  • In this research, the cracking of tunnel concrete lining was investigated and analyzed through long-term measurement and nonlinear numerical analysis. For one year after the casting of lining, the stresses and strains were measured by the sensors installed in hard rock tunnel lining. The measurements showed that only small stresses which were less than cracking stress occurred in every survey sections regardless of sensor directions. It could be induced that the external load applied to the lining was small or ignorable. Also, it was carried out short-term numerical analysis based on such site condition as ambient temperature, the- degree of overbreak and mold staying period. Long-term numerical analysis based on creep & shrinkage and nonlinear cracking was carried out. The output showed that construction condition and ambient environments could make the lining concrete crack without external loads. The cracks formed in this process does not indicate the structural instability of the tunnel.

  • PDF

A Study on the Non-Destructive Test of Concrete Tunnel Lining Using Infrared Thermography Technique (적외선 열화상기법을 이용한 콘크리트 터널 라이닝의 비파괴 시험에 관한 연구)

  • 김영근;장정범;김영진
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.75-83
    • /
    • 1997
  • The interest of diagnosis and maintenance of construction is increasing due to the collapse of infastructures. To obtain the complete, reliable and reproducible data ont he state of the entire structure, various non-destructive techniques are available, Especially, specific constructional characteristics of tunnels make the application of non-destructive tests more difficult. Despite of the complications of these conditions, non-destructive techniques should be capable of providing a description of the state of the tunnel lining, without the removal of the tunnel installations. In this paper, the infrared thermography technique using the difference of surface temperature was studied. The optimum equipment was selected and introduced, the principle, testing method and data anlaysis were investigated. Also, through the case study for inspection of concrete tunnel lining, this technique has proven to be a valuable non-destructive test for detecting the defects such as crack, leakage of water and exfoliation of concrete. The applicability and usefulness of this technique for estimation of concrete tunnel lining have been conformed.

  • PDF