• Title/Summary/Keyword: Tunnel incident detection system

Search Result 12, Processing Time 0.02 seconds

Development of Fire Detection Algorithm for Video Incident Detection System of Double Deck Tunnel (복층터널 영상유고감지시스템의 화재 감지 알고리즘 개발)

  • Kim, Tae-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1082-1087
    • /
    • 2019
  • Video Incident Detection System is a detection system for the purpose of detection of an emergency in an unexpected situation such as a pedestrian in a tunnel, a falling object, a stationary vehicle, a reverse run, and a fire(smoke and flame). In recent years, the importance of the city center has been emphasized by the construction of underpasses in great depth underground space. Therefore, in order to apply Video Incident Detection System to a Double Deck Tunnel, it was developed to reflect the design characteristics of the Double Deck Tunnel. and In this paper especially, the fire detection technology, which is not it is difficult to apply to the Double Deck Tunnel environment because it is not supported on existing Video Incident Detection System or has a fail detect, we propose fire detection using color image analysis, silhouette spread, and statistical properties, It is verified through a real fire test in a double deck tunnel test bed environment.

The National Highway, Expressway Tunnel Video Incident Detection System performance analysis and reflect attributes for double deck tunnel in great depth underground space (국도, 고속국도 터널 영상유고감지시스템 성능분석 및 대심도 복층터널 특성반영 방안)

  • Kim, Tae-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1325-1334
    • /
    • 2016
  • The video incident detection System is a probe for rapid detecting the walker, falling, stopped, backwards, smoke situation in tunnel. Recently, the importance is increases from the downtown double deck tunnel in great depth underground space[1], but the legal basis is weak and the vulnerable situation experimental data. So, In this paper, we introduce a long-term log data analysis information in the tunnenl video incident detection system installed and experimental results in order to verify the feasibility of apply to video incident detection system for the double deck tunnel. It is proposed a few things about derives the problem of existing video incident detection system, improvements and reflect attributes for double deck tunnel. The contents described in this paper will contribute to refine the prototype of video incident detection system will apply to future double deck multi-layer tunnels.

Vision-Based Fast Detection System for Tunnel Incidents (컴퓨터 시각을 이용한 고속 터널 유고감지 시스템)

  • Lee, Hee-Sin;Jeong, Sung-Hwan;Lee, Joon-Whoan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.9-18
    • /
    • 2010
  • Our country has so large mountain area that the tunnel construction is inevitable and the need of incident detection that provides safe management of tunnels is increasing. In this paper, we suggest a tunnel incident detection system using computer vision techniques, which can detect the incidents in a tunnel and provides the information to the tunnel administrative office in order to help safe tunnel operation. The suggested system enhances the processing speed by using simple processing algorithm such as image subtraction, and ensures the accuracy of the system by focused on the incident detection itself rather than its classification. The system is also cost effective because the video data from 4 cameras can be simultaneously analyzed in a single PC-based system. Our system can be easily extended because the PC-based analyzer can be increased according to the number of cameras in a tunnel. Also our web-based structure is useful to connect the other remotely located tunnel incident systems to obtain interoperability between tunnels. Through the experiments the system has successfully detected the incidents in real time including dropped luggage, stoped car, traffic congestion, man walker or bicycle, smoke or fire, reverse driving, etc.

Acoustic Signal-Based Tunnel Incident Detection System (음향신호 기반 터널 돌발상황 검지시스템)

  • Jang, Jinhwan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.5
    • /
    • pp.112-125
    • /
    • 2019
  • An acoustic signal-based, tunnel-incident detection system was developed and evaluated. The system was comprised of three components: algorithm, acoustic signal collector, and server system. The algorithm, which was based on nonnegative tensor factorization and a hidden Markov model, processes the acoustic signals to attenuate noise and detect incident-related signals. The acoustic signal collector gathers the tunnel sounds, digitalizes them, and transmits the digitalized acoustic signals to the center server. The server system issues an alert once the algorithm identifies an incident. The performance of the system was evaluated thoroughly in two steps: first, in a controlled tunnel environment using the recorded incident sounds, and second, in an uncontrolled tunnel environment using real-world incident sounds. As a result, the detection rates ranged from 80 to 95% at distances from 50 to 10 m in the controlled environment, and 94 % in the uncontrolled environment. The superiority of the developed system to the existing video image and loop detector-based systems lies in its instantaneous detection capability with less than 2 s.

Development of a deep-learning based tunnel incident detection system on CCTVs (딥러닝 기반 터널 영상유고감지 시스템 개발 연구)

  • Shin, Hyu-Soung;Lee, Kyu-Beom;Yim, Min-Jin;Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.915-936
    • /
    • 2017
  • In this study, current status of Korean hazard mitigation guideline for tunnel operation is summarized. It shows that requirement for CCTV installation has been gradually stricted and needs for tunnel incident detection system in conjunction with the CCTV in tunnels have been highly increased. Despite of this, it is noticed that mathematical algorithm based incident detection system, which are commonly applied in current tunnel operation, show very low detectable rates by less than 50%. The putative major reasons seem to be (1) very weak intensity of illumination (2) dust in tunnel (3) low installation height of CCTV to about 3.5 m, etc. Therefore, an attempt in this study is made to develop an deep-learning based tunnel incident detection system, which is relatively insensitive to very poor visibility conditions. Its theoretical background is given and validating investigation are undertaken focused on the moving vehicles and person out of vehicle in tunnel, which are the official major objects to be detected. Two scenarios are set up: (1) training and prediction in the same tunnel (2) training in a tunnel and prediction in the other tunnel. From the both cases, targeted object detection in prediction mode are achieved to detectable rate to higher than 80% in case of similar time period between training and prediction but it shows a bit low detectable rate to 40% when the prediction times are far from the training time without further training taking place. However, it is believed that the AI based system would be enhanced in its predictability automatically as further training are followed with accumulated CCTV BigData without any revision or calibration of the incident detection system.

Development of Real-time fire and Smoke Algorithms Using Surveillance Camera in Tunnel Environment (터널 내 감시 카메라 영상을 이용한 실시간 화염 및 연기 탐지 기법의 개발)

  • Lee, Byoung-Moo;Han, Dong-Il
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.219-220
    • /
    • 2007
  • In this paper, we proposed image processing technique for automatic real time fire and smoke detection in tunnel environment. To avoid the large scale of damage of fire occurred in the tunnel, it is necessary to have a system to minimize and to discover the incident as fast as possible. The fire and smoke detection is different from the forest fire detection as there are elements such as car and tunnel lights and others that are different from the forest environment so that an indigenous algorithm has to be developed. The two algorithms proposed in this paper, are able to detect the exact position, at the earlier stage of incident.

  • PDF

Development of a deep-learning based automatic tracking of moving vehicles and incident detection processes on tunnels (딥러닝 기반 터널 내 이동체 자동 추적 및 유고상황 자동 감지 프로세스 개발)

  • Lee, Kyu Beom;Shin, Hyu Soung;Kim, Dong Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1161-1175
    • /
    • 2018
  • An unexpected event could be easily followed by a large secondary accident due to the limitation in sight of drivers in road tunnels. Therefore, a series of automated incident detection systems have been under operation, which, however, appear in very low detection rates due to very low image qualities on CCTVs in tunnels. In order to overcome that limit, deep learning based tunnel incident detection system was developed, which already showed high detection rates in November of 2017. However, since the object detection process could deal with only still images, moving direction and speed of moving vehicles could not be identified. Furthermore it was hard to detect stopping and reverse the status of moving vehicles. Therefore, apart from the object detection, an object tracking method has been introduced and combined with the detection algorithm to track the moving vehicles. Also, stopping-reverse discrimination algorithm was proposed, thereby implementing into the combined incident detection processes. Each performance on detection of stopping, reverse driving and fire incident state were evaluated with showing 100% detection rate. But the detection for 'person' object appears relatively low success rate to 78.5%. Nevertheless, it is believed that the enlarged richness of image big-data could dramatically enhance the detection capacity of the automatic incident detection system.

The Stopped Vehicle Detection in the Tunnel Incident Surveillance System (터널 영상 유고 감지 시스템에서 정차 검출 알고리즘)

  • Kim, Gyu-Yeung;Lee, Geun-Hoo;Kim, Hyun-Tae;Kim, Jae-Ho;Yu, Yun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.607-608
    • /
    • 2011
  • In this paper, we propose stopped vehicle detection algorithm in the tunnel. It is shown that our method distinguished objects from background estimated image, and then detected stopped vehicles efficiently based on the experimental analysis about the color information of their lamps. The simulation results show the detection rate is achieved over 95% in the tunnel image.

  • PDF

An Acoustic Event Detection Method in Tunnels Using Non-negative Tensor Factorization and Hidden Markov Model (비음수 텐서 분해와 은닉 마코프 모델을 이용한 터널 환경에서의 음향 사고 검지 방법)

  • Kim, Nam Kyun;Jeon, Kwang Myung;Kim, Hong Kook
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.9
    • /
    • pp.265-273
    • /
    • 2018
  • In this paper, we propose an acoustic event detection method in tunnels using non-negative tensor factorization (NTF) and hidden Markov model (HMM) applied to multi-channel audio signals. Incidents in tunnel are inherent to the system and occur unavoidably with known probability. Incidents can easily happen minor accidents and extend right through to major disaster. Most incident detection systems deploy visual incident detection (VID) systems that often cause false alarms due to various constraints such as night obstacles and a limit of viewing angle. To this end, the proposed method first tries to separate and detect every acoustic event, which is assumed to be an in-tunnel incident, from noisy acoustic signals by using an NTF technique. Then, maximum likelihood estimation using Gaussian mixture model (GMM)-HMMs is carried out to verify whether or not each detected event is an actual incident. Performance evaluation shows that the proposed method operates in real time and achieves high detection accuracy under simulated tunnel conditions.

Preliminary study on car detection and tracking method using surveillance camera in tunnel environment for accident detection (터널 내 유고상황 자동 판정을 위한 선행 연구: CCTV를 이용한 차량의 탐지와 추적 기법 고찰)

  • Oh, Young-Sup;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.813-827
    • /
    • 2017
  • Surveillance cameras installed in tunnels capture the various video frames effected by dynamic and variable factors. In addition, localizing and managing the cameras in tunnel is not affordable, and quality of capturing frame is effected by time. In this paper, we introduce a new method to detect and track the vehicles in tunnel by using surveillance cameras installed in a tunnel. It is difficult to detect the video frames directly from surveillance cameras due to the motion blur effect and blurring effect on lens by dirt. In order to overcome this difficulties, two new methods such as Differential Frame/Non-Maxima Suppression (DFNMS) and Haar Cascade Detector to track cars are proposed and investigated for their feasibilities. In the study, it was shown that high precision and recall values could be achieved by the two methods, which then be capable of providing practical data and key information to an automatic accident detection system in tunnels.