• Title/Summary/Keyword: Tunnel image

Search Result 243, Processing Time 0.025 seconds

Visualization of Turbulent Flow Fields Around a Circular Cylinder at Reynolds Number 1.4×105 Using PIV

  • Jun-Hee Lee;Bu-Geun Paik;Seok-Kyu Cho;Jae-Hwan Jung
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.137-144
    • /
    • 2023
  • This study investigates the experimental parameters of particle image velocimetry (PIV) to enhance the measurement technique for turbulent flow fields around a circular cylinder at a Reynolds number (Re) of 1.4×105. At the Korea Research Institute of Ships & Ocean Engineering (KRISO), we utilized the cavitation tunnel and PIV system to capture the instantaneous flow fields and statistically obtained the mean flow fields. An aspect ratio and blockage ratio of 16.7% and 6.0%, respectively, were considered to minimize the tunnel wall effect on the cylinder wakes. The optimal values of the pulse time and the number of flow fields were determined by comparing the contours of mean streamlines, velocities, Reynolds shear stresses, and turbulent kinetic energy under their different values to ensure accurate and converged results. Based on the findings, we recommend a pulse time of 45 ㎲ corresponding to a particle moving time of 3-4 pixels, and at least 3,000 instantaneous flow fields to accurately obtain the mean flow fields. The results of the present study agree well with those of previous studies that examined the end of the subcritical flow regime.

Panoramic Image Synthesis Using Flash and No-Flash Image Pairs (Flash 영상과 No-flash 영상을 이용한 파노라마 영상합성)

  • Ye, Sang-Myoung;Park, Rae-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.355-356
    • /
    • 2007
  • This paper proposes a new panoramic image synthesis method using flash and no-flash image pairs, which reduces undesirable artifacts. Generally, in panoramic images, it is difficult to determine to use a flash in indoor environment. A flash image has unwanted artifacts such as hot spots and tunnel effect whereas a no-flash image also has artifacts like glass reflection. We derive cross projection tensors using flash and no-flash image pairs and transform the gradient field of a no-flash image using them. The image reconstructed from the modified gradient provides enhanced results, which are applied to synthesis of panoramic images. The proposed method can provide a better panoramic image than the conventional method. Experimental results show the effectiveness of the proposed method.

  • PDF

Vision-Based Fast Detection System for Tunnel Incidents (컴퓨터 시각을 이용한 고속 터널 유고감지 시스템)

  • Lee, Hee-Sin;Jeong, Sung-Hwan;Lee, Joon-Whoan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.9-18
    • /
    • 2010
  • Our country has so large mountain area that the tunnel construction is inevitable and the need of incident detection that provides safe management of tunnels is increasing. In this paper, we suggest a tunnel incident detection system using computer vision techniques, which can detect the incidents in a tunnel and provides the information to the tunnel administrative office in order to help safe tunnel operation. The suggested system enhances the processing speed by using simple processing algorithm such as image subtraction, and ensures the accuracy of the system by focused on the incident detection itself rather than its classification. The system is also cost effective because the video data from 4 cameras can be simultaneously analyzed in a single PC-based system. Our system can be easily extended because the PC-based analyzer can be increased according to the number of cameras in a tunnel. Also our web-based structure is useful to connect the other remotely located tunnel incident systems to obtain interoperability between tunnels. Through the experiments the system has successfully detected the incidents in real time including dropped luggage, stoped car, traffic congestion, man walker or bicycle, smoke or fire, reverse driving, etc.

Wind Tunnel Test of the Straight and Forward Swept Canards

  • Chung, Jin-Deog;Sung, Bong-Zoo;Lee, Jang-Yeon;Kim, Eung-Tai
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.19-25
    • /
    • 2003
  • A low speed wind tunnel test for the canard airplane model was conducted in KARI LSWT. To measure the required level of accuracy, the image system was applied for all elevator deflection and different canard incidence conditions. By doing so, the difference in aerodynamic characteristics between the forward swept and straight canards can be precisely evaluated, and the pros and cons of both canards arrangements can be discussed. Compared with both canard configurations at the same incidence angle setting, the straight canard has benefits in lift and drag, and the slope of pitching moment increases more moderately than the forward swept canard. The listed data and discussion would be useful to whom wants to design a canard airplane.

Investigation of ground behaviour between plane-strain grouped pile and 2-arch tunnel station excavation (2-arch 터널 정거장 굴착 시 평면변형률 조건에서 군말뚝의 이격거리에 따른 지반거동 분석)

  • Kong, Suk-Min;Oh, Dong-Wook;Ahn, Ho-Yeon;Lee, Hyun-Gu;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.535-544
    • /
    • 2016
  • Special tunnel design and construction methods have been suggested due to developments of subway and tunnel. Collapse accidents of tunnel bring enormous damage. So, observation and analysis for the safety of tunnelling and behaviour of surrounding ground are important. But, it is not economical to implement the field test in every time. Therefore, this study has measured ground behaviour due to excavation of 2-arch tunnel station according to offset between grouped pile and tunnel by laboratory model test. For the model test, trapdoor device was adopted. Tunnelling is simulated by volume loss of 2-arch tunnel. Ground displacements are observed by close range photogrammetric method and image processing. In addition, these data are compared with numerical analysis.

Crack Detection in Tunnel Using Convolutional Encoder-Decoder Network (컨볼루셔널 인코더-디코더 네트워크를 이용한 터널에서의 균열 검출)

  • Han, Bok Gyu;Yang, Hyeon Seok;Lee, Jong Min;Moon, Young Shik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.80-89
    • /
    • 2017
  • The classical approaches to detect cracks are performed by experienced inspection professionals by annotating the crack patterns manually. Because of each inspector's personal subjective experience, it is hard to guarantee objectiveness. To solve this issue, automated crack detection methods have been proposed however the methods are sensitive to image noise. Depending on the quality of image obtained, the image noise affect overall performance. In this paper, we propose crack detection method using a convolutional encoder-decoder network to overcome these weaknesses. Performance of which is significantly improved in terms of the recall, precision rate and F-measure than the previous methods.

A Study on Surface Properties of Ablative Materials from 0.4MW Arc-Heated Wind Tunnel Test (0.4MW 아크 가열 풍동 시험을 통한 삭마 재료의 표면 특성 연구)

  • Kim, Nam Jo;Oh, Philyong;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1048-1053
    • /
    • 2015
  • Ablative materials in a thermal protection system for atmospheric re-entry suffers from the most severe heat fluxes and temperatures, which induces surface recession in the thickness direction. In this paper, a 0.4MW arc-heated wind tunnel is operated to test for ablative materials, and a non-contact three-dimensional surface measuring system is used to evaluate the different surface characteristics of them. In particular, by postprocessing the three-dimensional image data, the surface roughness and recession of ablative materials can be calculated before and after the wind tunnel test. Moreover, the surface properties are analyzed quantitatively by comparing volume and mass losses of the test specimens.

Measurement of Tunnel 3-D Displacement using Digital Photogrammetry (디지털 영상을 이용한 터널 3차원 변위 계측)

  • Kim, Kwang-Yeom;Kim, Chang-Yong;Lee, Seung-Do;Seo, Yong-Seok;Lee, Chung-In
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.567-576
    • /
    • 2007
  • In order to assess the on-site applicability of 3D absolute displacement monitoring of tunnel using digital photogrammetry, the displacement of the optical target placed at the measurement section was investigated, as planned in the OO tunnel construction site. The targets on 3 measurement lines only were considered for each point of measurement for the reconstruction of 3D cubic model for the digital vision monitoring. For each 3D model, 3 or more images have to be obtained at each point. On the last 2 measurement lines, 6 targets (crown, left and right walls) were continuously overlapped to construct 3D models so that 6 or more apices can be shared by 2 3D models. In order to compare the measurement methods of 3D absolute displacements in tunnel excavation, i. e, total station and digital image measurement, both the digital image measurement and optical measurement were conducted for 10 times in the same work section. The time and measurement results of both methods were compared.

Deep learning based crack detection from tunnel cement concrete lining (딥러닝 기반 터널 콘크리트 라이닝 균열 탐지)

  • Bae, Soohyeon;Ham, Sangwoo;Lee, Impyeong;Lee, Gyu-Phil;Kim, Donggyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.583-598
    • /
    • 2022
  • As human-based tunnel inspections are affected by the subjective judgment of the inspector, making continuous history management difficult. There is a lot of deep learning-based automatic crack detection research recently. However, the large public crack datasets used in most studies differ significantly from those in tunnels. Also, additional work is required to build sophisticated crack labels in current tunnel evaluation. Therefore, we present a method to improve crack detection performance by inputting existing datasets into a deep learning model. We evaluate and compare the performance of deep learning models trained by combining existing tunnel datasets, high-quality tunnel datasets, and public crack datasets. As a result, DeepLabv3+ with Cross-Entropy loss function performed best when trained on both public datasets, patchwise classification, and oversampled tunnel datasets. In the future, we expect to contribute to establishing a plan to efficiently utilize the tunnel image acquisition system's data for deep learning model learning.

A Study on Flame and Smoke Detection Method of a Tunnel Fire (터널 화재의 화염 및 연기 검출 기법 연구)

  • Lee, Jeong-Hun;Lee, Byoung-Moo;Han, Dong-Il
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1027-1028
    • /
    • 2008
  • In this paper, we proposed image-processing technique for automatic real-time fire and smoke detection in tunnel fire environment. To minimize false detection of fire in tunnel we used motion information of video sequence. And this makes it possible to detect exact position of event in early stage with detection, test, and verification procedures. In addition, by comparing false detection elimination results of each step, we have proved the validity and efficiency of proposed algorithm.

  • PDF