• Title/Summary/Keyword: Tunnel image

Search Result 243, Processing Time 0.032 seconds

Development of Crack Detection System for Highway Tunnels using Imaging Device and Deep Learning (영상장비와 딥러닝을 이용한 고속도로 터널 균열 탐지 시스템 개발)

  • Kim, Byung-Hyun;Cho, Soo-Jin;Chae, Hong-Je;Kim, Hong-Ki;Kang, Jong-Ha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.65-74
    • /
    • 2021
  • In order to efficiently inspect rapidly increasing old tunnels in many well-developed countries, many inspection methodologies have been proposed using imaging equipment and image processing. However, most of the existing methodologies evaluated their performance on a clean concrete surface with a limited area where other objects do not exist. Therefore, this paper proposes a 6-step framework for tunnel crack detection deep learning model development. The proposed method is mainly based on negative sample (non-crack object) training and Cascade Mask R-CNN. The proposed framework consists of six steps: searching for cracks in images captured from real tunnels, labeling cracks in pixel level, training a deep learning model, collecting non-crack objects, retraining the deep learning model with the collected non-crack objects, and constructing final training dataset. To implement the proposed framework, Cascade Mask R-CNN, an instance segmentation model, was trained with 1561 general crack images and 206 non-crack images. In order to examine the applicability of the trained model to the real-world tunnel crack detection, field testing is conducted on tunnel spans with a length of about 200m where electric wires and lights are prevalent. In the experimental result, the trained model showed 99% precision and 92% recall, which shows the excellent field applicability of the proposed framework.

A Study on the Effect of Artificial Cutting Slot on the Fragmentation and Vibration Propagation in the Full-scaled Concrete Block Blasting (콘크리트 블록 발파 실험을 통한 인공 슬롯 자유면이 진동전파 및 파쇄효과에 미치는 영향에 관한 연구)

  • Oh, Se-Wook;Min, Gyeong-Jo;Park, Se-Woong;Park, Hoon;Noh, You-Song;Suk, Chul-Gi;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.692-705
    • /
    • 2018
  • Ground vibration is one of the remarkable issues in tunnel blasting. In recent studies, to improve the fragmentation with reduction of ground vibration in tunnel blasting, a vibration-controlled blasting method with artificial cutting slot near the center-cut holes has been suggested. This study examines the effect of the different arrangement of artificial cut-slot on the vibration reduction and fragmentation by performing the full-scaled concrete block blast experiments and the numerical simulations with 3D-DFPA. The results show that the existence of artificial slot contributes to the improvement of vibration reduction, blast fragmentation and the efficiency of the cutting slot blast. It can be explained that the artificial slot play a free surface role and should decrease the burden between the cut holes. Crater volumes of the blasted concrete blocks were measured by 3-dimensional digital image analysis and compared with the ideal standard crater volume which can be calculated by theoretical standard blast design method. As a result, the ratio of burden and hole diameter which should achieve the standard crater in the cut-hole blasting were suggested.

A Study on the Accuracy Comparison of Object Detection Algorithms for 360° Camera Images for BIM Model Utilization (BIM 모델 활용을 위한 360° 카메라 이미지의 객체 탐지 알고리즘 정확성 비교 연구)

  • Hyun-Chul Joo;Ju-Hyeong Lee;Jong-Won Lim;Jae-Hee Lee;Leen-Seok Kang
    • Land and Housing Review
    • /
    • v.14 no.3
    • /
    • pp.145-155
    • /
    • 2023
  • Recently, with the widespread adoption of Building Information Modeling (BIM) technology in the construction industry, various object detection algorithms have been used to verify errors between 3D models and actual construction elements. Since the characteristics of objects vary depending on the type of construction facility, such as buildings, bridges, and tunnels, appropriate methods for object detection technology need to be employed. Additionally, for object detection, initial object images are required, and to obtain these, various methods, such as drones and smartphones, can be used for image acquisition. The study uses a 360° camera optimized for internal tunnel imaging to capture initial images of the tunnel structures of railway and road facilities. Various object detection methodologies including the YOLO, SSD, and R-CNN algorithms are applied to detect actual objects from the captured images. And the Faster R-CNN algorithm had a higher recognition rate and mAP value than the SSD and YOLO v5 algorithms, and the difference between the minimum and maximum values of the recognition rates was small, showing equal detection ability. Considering the increasing adoption of BIM in current railway and road construction projects, this research highlights the potential utilization of 360° cameras and object detection methodologies for tunnel facility sections, aiming to expand their application in maintenance.

A Study for Generation of Artificial Lunar Topography Image Dataset Using a Deep Learning Based Style Transfer Technique (딥러닝 기반 스타일 변환 기법을 활용한 인공 달 지형 영상 데이터 생성 방안에 관한 연구)

  • Na, Jong-Ho;Lee, Su-Deuk;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.131-143
    • /
    • 2022
  • The lunar exploration autonomous vehicle operates based on the lunar topography information obtained from real-time image characterization. For highly accurate topography characterization, a large number of training images with various background conditions are required. Since the real lunar topography images are difficult to obtain, it should be helpful to be able to generate mimic lunar image data artificially on the basis of the planetary analogs site images and real lunar images available. In this study, we aim to artificially create lunar topography images by using the location information-based style transfer algorithm known as Wavelet Correct Transform (WCT2). We conducted comparative experiments using lunar analog site images and real lunar topography images taken during China's and America's lunar-exploring projects (i.e., Chang'e and Apollo) to assess the efficacy of our suggested approach. The results show that the proposed techniques can create realistic images, which preserve the topography information of the analog site image while still showing the same condition as an image taken on lunar surface. The proposed algorithm also outperforms a conventional algorithm, Deep Photo Style Transfer (DPST) in terms of temporal and visual aspects. For future work, we intend to use the generated styled image data in combination with real image data for training lunar topography objects to be applied for topographic detection and segmentation. It is expected that this approach can significantly improve the performance of detection and segmentation models on real lunar topography images.

Estimation of fire Experiment Prediction by Utility Tunnels Fire Experiment and Simulation (지하공동구 화재 실험 및 시뮬레이션에 의한 화재 설칠 예측 평가)

  • 윤명오;고재선;박형주;박성은
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-33
    • /
    • 2001
  • The utility tunnels are the important facility as a mainstay of country because of the latest communication developments. However, the utilities tunnel is difficult to deal with in case of a fire accident. When a cable burns, the black smoke containing poisonous gas will be reduced. This black smoke goes into the tunnel, and makes it difficult to extinguish the fire. Therefore, when there was a fire in the utility tunnel, the central nerves of the country had been paralyzed, such as property damage, communication interruption, in addition to inconvenience for people. This paper is based on the fire occurred in the past, and reenacting the fire by making the real utilities tunnel model. The aim of this paper is the scientific analysis of the character image of the fire, and the verification of each fire protection system whether it works well after process of setting up a fire protection system in the utilities tunnel at a constant temperature. The fire experiment was equipped with the linear heat detector, the fire door, the connection water spray system and the ventilation system in the utilities tunnel. Fixed portion of an electric power supply cable was coated with a fire retardant coating, and a heating tube was covered with a fireproof. The result showed that the highest temperature was $932^{\circ}c$ and the linear heat detector was working at the constant temperature, and it pointed at the place of the fire on the receiving board, and Fixed portion of the electric power supply cable coated with the fire retardant coating did not work as the fireproof. The heating tube was covered with the fireproof about 30 minutes.

  • PDF

Effects of turbulent boundary layer thickness on flow around a low-rise rectangular prism

  • Kim, Kyung Chun;Ji, Ho Seong;Seong, Seung Hak
    • Wind and Structures
    • /
    • v.8 no.6
    • /
    • pp.455-467
    • /
    • 2005
  • The effects of upstream velocity profiles on the flow around a low-rise rectangular prism submerged in a turbulent boundary layer have been investigated. Three different boundary layer profiles are generated, which are characterized by boundary layer height, displacement thickness, and momentum thickness. Flow characteristics variations caused by the different layers such as those in turbulent kinetic energy distribution and locations of re-circulating cavities and reattachment points have been precisely measured by using a PIV (Particle Image Velocimetry) technique. Observations were made in a boundary layer wind tunnel at $Re_H$=7900, based on a model height of 40 mm and a free stream velocity of 3 m/s with 15 - 20% turbulence intensity.

Turbulent Flow Simulations on 2-Dimensional Ground Effect Part II. Study on the Effects of Ground Boundary Conditions (2차원 지면효과에 대한 난류 유동장 해석 Part II. 지면경계 조건의 영향에 대한 연구)

  • Kim, Yoon-Sik;Lee, Jae-Eun;Kim, Eu-Gene;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.670-676
    • /
    • 2007
  • A comparative study on ground boundary conditions for the airfoil in ground effect has been carried out. The objective of the present study is to clarify effects of the ground boundary conditions so that it will be helpful to analyse results of wind tunnel tests using the fixed ground board or the image method. A low Mach number preconditioned Navier-Stokes solver using the overlap grid method has been applied. It has been turned out that results with the symmetric boundary condition are almost the same to those with the moving boundary condition. Results with the fixed ground boundary show discrepancy to those with the moving boundary condition when flow separation on the ground board takes place.

Simulation and Analysing Methods of Snowdrifting around an Elevated Building in Antarctica (남극 건물주위에 형성되는 설퇴현상의 모의실험 및 분석방법에 관한 연구)

  • Kim, D.H.;Kwok, K.C.S.;Rohde, H.F.
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.35-44
    • /
    • 1989
  • 남극의 설퇴현상을 모의실험하기 위하여 폐쇠식 대기경계층난류풍동을 호주 시드니대학토목공학과에 제작 설치하였다. 철강과 100mm높이의 구형판자 및 촘촘한 양탄자등의 실험요소를 사용하여 경계층전단난류를 유도발생켰다. 유도발생된 난류는 호주령 남극령토의 해안지역에 부는 난류와 비슷한 유형을 뛰었다. 자연눈에 대처할 물질을 찾기 위하여 몇몇종류의 가루를 사용하였으나 중탄산나트륨이 가장 적합한 것임이 증명되었다. 남극건물모델주위에 실험을 통해 쌓인 눈의 형태로부터 등고선무늬를 형상화 시켰으며 image processing unit을 이용하여 등고선무늬를 포착한 후 등고선 분석 software를 이용, 눈의 형태와 양을 분석하였다.

  • PDF

Flows through Evaporator for Cooling (증발기 냉각 팬에 의한 유동)

  • Kim Jae Won;Kim Nam Wook
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.499-502
    • /
    • 2002
  • The present study has been carried out for understanding of flows over an evaporator in cooling system of water. Main emphasis is to decide the flow patterns in order to enhance the flow rate with low noise level. Two cases aye examined for comparison of flows; one is blowing system and the other is suction style with respect to Inn system. Present methodology for this work is PIV (Particle Image Velocimetry) techniques and Rot-wire anemometer for velocity measurements and wind tunnel for performance of the present fan. Consequently, it is found that flows passing evaporator and other components for cooling are more effective than the suction flows. Flow details with performance of fan system are also presented for proper explanation of the conclusion.

  • PDF

Changes of Effective Elastic Moduli due to Crack Growth in Rock (암석내의 균열전파에 따른 유효탄성계수의 변화)

  • 신종진;전석원
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.301-308
    • /
    • 2000
  • Non-linear behavior of rock under compression can be predicted by a crack model. Crack growth in rock renders rock anisotropic. The degree of anisotropy is explained in terms of elastic moduli as a function of load level. In this study, we calculate the changes of elastic moduli due to crack growth numerically by using a crack model and compare these values with experimental results obtained from the measurement of ultrasonic wave velocities. Image processing technique is used to obtain the initial crack information needed for the numerical calculation of elastic moduli.

  • PDF