• Title/Summary/Keyword: Tunnel grouting

Search Result 182, Processing Time 0.029 seconds

Three-Dimensional Limit Equilibrium Stability Analysis of Spile-Reinforced Shallow Tunnel

    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.101-122
    • /
    • 1997
  • A spiting reinforcement system is composed of a series of radially installed reinforcing spites along the perimeter of the tunnel opening ahead of excavation. The reinforcing spill network is extended into the in-situ soil mass both radially and longitudinally The sailing reinforcement system has been successfully used for the construction of underground openings to reinforce weak rock formations on several occasions. The application of this spiting reinforcement system is currently extended to soft ground tunneling in limited occasions because of lack of reliable analysis and design methods. A method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground is presented. The shape of the potential failure wedge for the case of smile-reinforced shallow tunnel is assumed on the basis of the results of three dimensional finite element analyses. A criterion to differentiate the spill-reinforced shallow tunnel from the smile-reinforced deep tunnel is also formulated, where the tunnel depth, soil type, geometry of the tunnel and reinforcing spites, together with soil arching effects, are considered. To examine the suitability of the proposed method of threedimensional stability analysis in practice, overall stability of the spill-reinforced shallow tunnel at facing is evaluated, and the predicted safety factors are compared with results from twotimensional analyses. Using the proposed method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground, a parametric study is also made to investigate the effects of various design parameters such as tunnel depth, smile length and wadial spill spacing. With slight modifications the analytical method of threeiimensional stability analysis proposed may also be extended for the analysis and design of steel pipe reinforced multi -step grouting technique frequently used as a supplementary reinforcing method in soft ground tunnel construction.

  • PDF

Numerical Analysis on the Performance Evaluation of Cablebolts as Tunnel Supports (터널 지보재로서 케이블볼트의 성능평가에 관한 수치해석적 연구)

  • Park, Yeon-Jun;Park, Joon-Hyoung
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.130-143
    • /
    • 2012
  • Cablebolts used to be employed as auxiliary supports where long or high capacity bolts are needed, but become competitive by the improvements in supportability and easiness in handling. Based on the test results obtained from various researches, the performance of the cablebolts was analyzed numerically while varying lengths and fixing conditions. The supporting effecte is assessed by monitoring displacements and stress taken place in shotcrete. When cablebolts are grouted without being tensioned, supporting effect was not as good as that of rockbolts. But, their supportability was good enough to substitute rockbolts if tensioned properly. Post grouting right after tensioning of the cablebolts shows reduction in supportability, but long term stability could be achieved without losing supportability if grouted when the bolt is far enough from the face. Further study is necessary including laboratory and in-situ tests under various conditions to use cablebolts as main support in tunnels.

A stability study of deep and double-deck tunnels considering shape and reinforcing method of an enlarged section by using numerical analyses (수치해석을 이용한 대심도 복층터널의 확폭단면 형상 및 보강방법에 대한 안정성 연구)

  • You, Kwang-Ho;Jin, Su-Hyun;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.41-56
    • /
    • 2017
  • Recently, the necessity of deep and double-deck tunnels has been grown day by day due to the increase of traffic volume at metropolitans and thus the study on the divergence of those tunnels becomes required. Therefore sensitivity analyses were conducted with FLAC 2D program by selecting ground condition, coefficient of lateral pressure, support pattern, and depth of rock cover as parameters. Ultimately, this study is to find the optimal shape and support method of a diverged section. As the results of this study, it turned out that the box type gave higher stability of the section than arch type unlike the general thought. It can be explained that the arch type has about 30% bigger excavation area than the box type. When the ground conditions are poor, steel pipe grouting reinforcement gives higher stability than rockbolt reinforcement, but its thickness and range do not give a great influence on the stability of the enlarged section.

A study on the flexural toughness evaluation method of steel fiber reinforced shotcrete (강섬유 보강 숏크리트의 휨인성 평가 방법 연구)

  • 김재동;김덕영
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.196-210
    • /
    • 2000
  • This study was aimed to verify the validity of the flexural toughness evaluation method of steel fiber reinforced shotcrete(SFRS) currently being adopted by Korea Highway Corporation(KHC). Total 33 beam specimens using six different kinds of steel fiber products were prepared at tunnel construction sites and flexural toughness tests were executed at laboratory. Equivalent flexural strengths and toughness quotients were evaluated from the tests following the KHC guide iud these were compared with the quality grades determined under the guides proposed by ASTM, ITA and EFNARC. To discard the disadvantage that the toughness quotient could be influenced by flexural strength when following the KHC guide, a modification substituting the designed flexural strength for the flexural strength in the toughness quotient calculation formula was proposed to rate the quality of SFRS more adequately.

  • PDF

Experimental study on the mechanical response and failure behavior of double-arch tunnels with cavities behind the liner

  • Zhang, Xu;Zhang, Chengping;Min, Bo;Xu, Youjun
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.399-410
    • /
    • 2020
  • Cavities often develop behind the vault during the construction of double-arch tunnels, generally in the form of various defects. The study evaluates the impact of cavities behind the vault on the mechanical and failure behaviors of double-arch tunnels. Cavities of the same sizes are introduced at the vault and the shoulder close to the central wall of double-arch tunnels. Physical model tests are performed to investigate the liner stress variation, the earth pressure distribution and the process of progressive failure. Results reveal that the presence of cavities behind the liner causes the re-distribution of the earth pressure and induces stress concentration near the boundaries of cavities, which results in the bending moments in the liner inside the cavity to reverse sign from compression to tension. The liner near the invert becomes the weak region and stress concentration points are created in the outer fiber of the liner at the bottom of the sidewall and central wall. It is suggested that grouting into the foundation soils and backfilling injection should be carried out to ensure the tunnel safety. Changes in the location of cavities significantly impact the failure pattern of the liner close to the vault, e.g., cracks appear in the outer fiber of the liner inside the cavity when a cavity is located at the shoulder close to the central wall, which is different from the case that the cavity locates at the vault, whereas changes in the location of cavities have a little influence on the liner at the bottom of the double-arch tunnels.

Critical face pressure and backfill pressure of shield TBM considering surface settlements of saturated clayey ground (쉴드 TBM 굴진에 따른 포화 점성토 지반의 침하거동을 고려한 한계 굴진면압과 한계 뒤채움압)

  • Kim, Kiseok;Oh, Ju-Young;Lee, Hyobum;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.433-452
    • /
    • 2018
  • The shield tunneling method can minimize surface settlements by preventing the deformation of tunnel face and tunnel intrados due to tunnel excavation. For this purpose, it is very important to control the operating conditions of shield TBM. The face pressure and backfill pressure for tail void grouting should be the most important and immediate measure not only to restrain surface settlement, but also to influence the effective stress and pore water pressure around the circumstance of tunnel during excavation. The reaction of the ground to the application of face pressure and backfill pressure relies on the stiffness and permeability of ground. Especially, the reaction of saturated clayey ground formations, which shows the time-dependent deformation, is different from the permeable ground. Hence, in this paper it was investigated how the TBM operating conditions, ground stiffness, and permeability impact on the surface settlement of saturated clayey ground. For this purpose, a series of parametric studies were carried out by means of the stress-pore water pressure coupled FE analysis. The results show that the settlement of soft clayey ground is divided into the immediate settlement and consolidation settlement. Especially, the consolidation settlement depends on the ground stiffness and permeability. In addition, the existence of critical face pressure and backfill pressure was identified. The face pressure and backfill pressure above the critical value may cause an unexpected increase in the ground settlement.

Deformation of segment lining and behavior characteristics of inner steel lining under external loads (외부 하중에 따른 세그먼트 라이닝 변형과 보강용 내부 강재 라이닝의 거동 특성)

  • Gyeong-Ju Yi;Ki-Il Song
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.255-280
    • /
    • 2024
  • If there are concerns about the stability of segment lining due to section deficiency or large deformation in shield TBM tunnel, reinforcement can be done through ground grouting outside the tunnel or by using steel plate reinforcement, ring beam reinforcement, or inner double layer lining inside the tunnel. Traditional analyses of shield TBM tunnels have been conducted using a continuum method that does not consider the segmented nature of segment lining. This study investigates the reinforcement mechanism for double layer reinforced sections with internal steel linings. By improving the modeling of segment lining, this study applies Break-joint mode (BJM), which considers the segmented characteristics of segment lining, to analyze the deformation characteristics of double layer reinforced sections. The results indicate that the existing concrete segment lining functioned similarly to ground reinforcement around the tunnel, rather than distribution the load. In general, both the BJM model considering the segmentation of segment lining and the continuum rigid method were similar deformation shapes and stress distributions of the lining under load. However, in terms of deformation, when the load strength exceeded the threshold, the deformation patterns of the two models differed.

A Numerical Study on the NATM Tunnel Reinforcement using Centrifuge Model Experimental value (실험값을 이용한 NATM 터널의 보강효과에 관한 수치 해석적 연구)

  • Huh, Kyung-Han;Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.2 s.13
    • /
    • pp.13-18
    • /
    • 2004
  • In this study, in the first place, parameters primarily influencing displacement and stress were constructed by using the Finite Difference Method; then using those parameters, the result of crown displacement and convergence among the existing, experimental values of a centrifuge model were compared with the result of numerical analysis; and then considering the stress and time effect of lining installation, parameters according to the difference of stiffness were studied. In the result of this study, it found out that rough, ground reinforcement effect manifests itself when reinforcement propert of the grouting of the big scale steel pipe through 3-D analysis is E= 4,000tf/m2 which of the stiffness of the original ground.

Effect of a frontal impermeable layer on the excess slurry pressure during the shield tunnelling in the saturated sand (포화 사질토에서 전방 차수층이 쉴드터널 초과 이수압에 미치는영향)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.4
    • /
    • pp.347-370
    • /
    • 2011
  • Slurry type shield would be very effective for the tunnelling in a sandy ground, when the slurry pressure would be properly adjusted. Low slurry pressure could cause a tunnel face failure or a ground settlement in front of the tunnel face. Thus, the stability of tunnel face could be maintained by applying an excess slurry pressure that is larger than the active earth pressure. However, the slurry pressure should increase properly because an excessively high slurry pressure could cause the slurry flow out or the passive failure of the frontal ground. It is possible to apply the high slurry pressure without passive failure if a horizontal impermeable layer is located in the ground in front of the tunnel face, but its location, size, and effects are not clearly known yet. In this research, two-dimensional model tests were carried out in order to find out the effect of a horizontal impermeable layer for the slurry shield tunnelling in a saturated sandy ground. In tests slurry pressure was increased until the slurry flowed out of the ground surface or the ground fails. Location and dimension of the impermeable layer were varied. As results, the maximum and the excess slurry pressure in sandy ground were linearly proportional to the cover depth. Larger slurry pressure could be applied to increase the stability of the tunnel face when the impermeable layer was located in the ground above the crown in front of the tunnel face. The most effective length of the impermeable grouting layer was 1.0 ~ 1.5D, and the location was 1.0D above the crown level. The safety factor could be suggested as the ratio of the maximum slurry pressure to the active earth pressure at the tunnel face. It could also be suggested that the slurry pressure in the magnitude of 3.5 ~4.0 times larger than the active earth pressure at the initial tunnel face could be applied if the impermeable layer was constructed at the optimal location.

Effect of pore-water salinity on freezing rate in application of rapid artificial ground freezing to deep subsea tunnel: concentration of laboratory freezing chamber test (고수압 해저터널에 급속 인공동결공법 적용시 간극수의 염분 농도가 동결속도에 미치는 영향 평가: 실내 동결챔버시험 위주로)

  • Oh, Mintaek;Lee, Dongseop;Son, Young-Jin;Lee, In-Mo;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.401-412
    • /
    • 2016
  • It is extremely difficult to apply conventional grouting methods to subsea tunnelling construction in the high water pressure condition. In such a condition, the rapid artificial freezing method can be an alternative to grouting to form a watertight zone around freezing pipes. For a proper design of the artificial freezing method, the influence of salinity on the freezing process has to be considered. However, there are few domestic tunnel construction that adopted the artificial freezing method, and influential factors on the freezing of the soil are not clearly identified. In this paper, a series of laboratory experiments were performed to identify the physical characteristics of frozen soil. Thermal conductivity of the frozen and unfrozen soil samples was measured through the thermal sensor adopting transient hot-wire method. Moreover, a lab-scale freezing chamber was devised to simulate freezing process of silica sand with consideration of the salinity of pore-water. The temperature in the silica sand sample was measured during the freezing process to evaluate the effect of pore-water salinity on the frozen rate that is one of the key parameters in designing the artificial freezing method in subsea tunnelling. In case of unfrozen soil, the soil samples saturated with fresh water (salinity of 0%) and brine water (salinity of 3.5%) showed a similar value of thermal conductivity. However, the frozen soil sample saturated with brine water led to the thermal conductivity notably higher than that of fresh water, which corresponds to the fact that the freezing rate of brine water was greater than that of fresh water in the freezing chamber test.