• Title/Summary/Keyword: Tunnel collapse load

Search Result 18, Processing Time 0.024 seconds

Assessment of Tunnel Collapse Load by Closed-Form Analytical Solution and Finite Element Analysis (근사적인 해석법과 유한요소해석에 의한 터널붕괴하중 평가)

  • Lee, Yong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.185-197
    • /
    • 2007
  • Limit analysis of upper and lower bound solutions has been well developed to provide the stability numbers for shallow tunnels in cohesive soil ($c_u$ material), cohesive-frictional soil (c'-$\phi$' material) and cohesionless soil ($\phi$'material). However, an extension of these methods to relatively deep circular tunnels in the cohesionless soil has been explored rarely to date. For this reason, the closed-form analytical solutions including lower bound solution based on the stress discontinuity concept and upper bound solution based on the kinematically admissible failure mechanism were proposed for assessing tunnel collapse load in this study. Consequently, the tunnel collapse load from those solutions was compared with both the finite element analysis and the previous analytical bound solutions and shown to be in good agreement with the FE results, in particular with the FE soil elements located on the horizontal tunnel axis.

Auxiliary Reinforcement Method for Collapse of Tunnel in the Coal Shale Fractured Zone (탄질 셰일 파쇄구간에서 터널 붕락부 거동 및 보강 연구)

  • Kim, Nagyoung;Moon, Changyeul;Park, Yongseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.85-95
    • /
    • 2007
  • It is difficult for seismic survey to get hold of characteristic of coal shale fractured zone and if coal shale zone did not come into contact with underground water, coal shale zone has characteristic of good strength. But in case coal shale zone is exposed by excavation or blasting to the air, strength of coal shale zone decreases in short term and weathering of coal shale zone progresses rapidly. Therefore, the prediction of tunnel collapse is not easy in the coal shale zone and the great portion of tunnel collapse takes place in a moment. From a view point of strength, after twelve hours form result of point load test strength of coal shale decreases by fifty six percent when coal shale zone come into contact with ground water. The standard reinforcement design of coal shale fractured zone was presented in the paper.

  • PDF

Collapse Behavior of Small-Scaled RC Structures Using Felling Method (전도공법에 의한 축소모형 철근콘크리트 구조물의 붕괴거동)

  • Park, Hoon;Lee, Hee-Gwang;Yoo, Ji-Wan;Song, Jeung-Un;Kim, Seung-Kon
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.381-388
    • /
    • 2007
  • The regular RC structures have been transformed into irregular RC structures by alternate load of RC structures during explosive demolition. Numerical simulation programs have contributed to a better understanding of large displacement collapse behavior during explosive demolition, but there remain a number of problems which need to be solved. In this study, the 1/5 scaled 1, 3 and 5 stories RC structures were designed and fabricated. To consider the collapse possibility of upper dead load, fabricated RC structures were demolished by means of felling method. To observe the collapse behavior of the RC structures during felling, displacement of X-direction (or horizontal), displacement of Z-direction (or vertical) md relative displacement angle from respective RC structures were analyzed. Finally explosive demolition on the scaled RC structures using felling method are carried out, collapse behavior by felling method is affected by upper dead load of scaled RC structures. Displacement of X and Z direction increases gradually to respective 67ms and 300ms after blasting. It is confirmed that initial collapse velocity due to alternate load has a higher 3 stories RC structures than 5 stories.

Stability analysis of a tunnel excavated in weak rocks and the optimal design for the support pattern (연약지반내 굴착터널의 안정성 평가 및 최적보강설계에 관한 연구)

  • 최성웅;신희순
    • Tunnel and Underground Space
    • /
    • v.7 no.3
    • /
    • pp.191-201
    • /
    • 1997
  • Geological and geotechnical surveys, in general, should precede the excavation to ensure the safety of the tunnel and should be followed up according to the various geological condition during the excavation. However actually the standard support patterns which were decided during the design step used be insisted for the whole excavation steps in spite of the various geological conditions. OO tunnel was excavated with NATM and a support pattern type-V in weak rocks. When the tunnel was excavated up to 25m long, the severe displacement was generated in the portal area and the shotcrete was damaged to make the cracks and the tunnel face was totally collapsed. It might happen owing to the one-day heavy rain, but the exact reason for that accident should be found out and the new optimal support patternt needed. Consequently three dimensional numerical analysis was applied for the evaluation of the cause of the tunnel collapse instead of two dimensional analysis, because three dimensional analysis can show better the real field phenomenon than two dimensional analysis in which the load distribution methods are adopted for the tunnel excavation. We could simulate the actual situations with three dimensional finite difference code and propose the new optimal support patterns.

  • PDF

Fire-Resistance Characteristics of Shield Tunnel Concrete Linings (쉴드터널 콘크리트 라이닝의 내화특성)

  • Park Hae Geun;Lee Myeong Sub;Jeon Sang Eun;Park Dong Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.32-35
    • /
    • 2004
  • In recent years a number of catastrophic tunnel fires, the Euro tunnel, the Mont Blanc tunnel, the Tauem tunnel and the Gotthard tunnel, have occurred and inflicted serious damages to European countries. If a fire occurs in shield tunnels, the reinforced concrete segment linings playing as an important structural member is expected to damage severely and finally can be caused the collapse of tunnel. The purpose of this study is to evaluate the performance of concrete segment lining under heat exposure and to obtain information to assist a new technical approach to fighting fires in tunnels. In order to evaluate the fire-resistance performance of concrete segment by adding Polypropylene fibers, fire tests using the RABT heat-load curve is carried out. The temperature rise of this curve is very rapid up to $1200^{\circ}C$ within 5 minutes, and duration time of the $1200^{\circ}C$ exposure is 55 minutes. From the fire test, it was found that the explosive spalling was rapidly reduced by adding polypropylene fibers and this method is considered as an effective fireproof material to upgrade fire safety in tunnels economically.

  • PDF

Deterministic and reliability-based design of necessary support pressures for tunnel faces

  • Li, Bin;Yao, Kai;Li, Hong
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.35-48
    • /
    • 2020
  • This paper provides methods for the deterministic and reliability-based design of the support pressures necessary to prevent tunnel face collapse. The deterministic method is developed by extending the use of the unique load multiplier, which is embedded within OptumG2/G3 with the intention of determining the maximum load that can be supported by a system. Both two-dimensional and three-dimensional examples are presented to illustrate the applications. The obtained solutions are validated according to those derived from the existing methods. The reliability-based method is developed by incorporating the Response Surface Method and the advanced first-order second-moment reliability method into the bisection algorithm, which continuously updates the support pressure within previously determined brackets until the difference between the computed reliability index and the user-defined value is less than a specified tolerance. Two-dimensional reliability-based support pressure is compared and validated via Monte Carlo simulations, whereas the three-dimensional solution is compared with the relationship between the support pressure and the resulting reliability index provided in the existing literature. Finally, a parametric study is carried out to investigate the influences of factors on the required support pressure.

Evaluation of Wind Load and Drag Coefficient of Insect Net in a Pear Orchard using Wind Tunnel Test (풍동실험을 통한 배과원 방충망의 풍하중 및 항력계수 평가)

  • Song, Hosung;Yu, Seok-Cheol;Kim, Yu Yong;Lim, Seong-Yoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.75-83
    • /
    • 2019
  • Fruit bagging is a traditional way to produce high-quality fruit and to prevent damage from insects and diseases. Growing pears by non-bagging is concerned about the damage from insect, it can be controlled by installing a insect net facility. Wind load should be considered to design the insect net facility because it has the risk of collapse due to the strong wind. So we carried out wind tunnel test for measurement of drag force, where the insect net with porosity about 65% is selected as an experimental subject. As a result of the test, drag force was measured to be 244.14 N when insect net area and wind speed are $1m^2$ and 22.7 m/s respectively. And, drag coefficients for the insect net were found to be about 0.55~0.57, which may be used as the preliminary data to design the insect net facilities at the orchard.

Seismic performance evaluation of middle-slab vibration damping rubber bearings in multi-layer tunnel through full-scale shaking table (실대형 진동대 시험을 통한 복층터널 중간 슬래브 진동 감쇠 고무받침 내진성능 평가)

  • Jang, Dongin;Park, Innjoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.337-346
    • /
    • 2020
  • Traffic jam and congestion in urban areas has caused the need to improve the utility of underground space. In response, research on underground structures is increasingly being conducted. Notably, a double-deck tunnel is one of the most widely used of all those underground structures. This double-deck tunnel is separated by the middle slab into the upper and lower roadways. Both vehicle load and earthquake load cause the middle slab to exhibit dynamic behavior. Earthquake-related response characteristics, in particular, are highly complex and difficult to interpret in a theoretical context, and thus experimental research is required. The aim of the present study is to assess the stability of a double-deck tunnel's middle slab of the Collapse Prevention Level and Seismic Category 1 with regard to the presence of vibration-damping Rubber Bearings. In vibration table tests, the ratio of similitude was set to 1/4. Linings and vibrating platforms were fixed during scaled model tests to represent the integrated behavior of the ground and the applied models. In doing so, it was possible to minimize relative behavior. The standard TBM cross-section for the virtual double-deck tunnel was selected as a test subject. The level of ground motion exerted on the bedrock was set to 0.154 g (artificial seismic wave, Collapse Prevention Level and Seismic Category 1). A seismic wave with the maximum acceleration of 0.154 g was applied to the vibration table input (bedrock) to analyze resultant amplification in the models. As a result, the seismic stability of the middle slab was evaluated and analyzed with respect to the presence of vibration-damping rubber bearings. It was confirmed that the presence of vibration-damping rubber bearings improved its earthquake acceleration damping performance by up to 40%.

Structural Safety Analysis and Reinforcement for Weak Area of the Coal Silo Tunnel using Finite Elements Analysis (유한요소해석을 이용한 Coal Silo Tunnel 취약부위의 구조안전성 분석 및 구조보강)

  • Lee, Hyun-Woo;Jung, Sung-Yuen;Song, Se-Arm;Kim, Min-Soo;Kim, Jin-Hyung;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.461-468
    • /
    • 2012
  • Silo is a warehouse for storing granular materials such as grain, cement, petroleum compound and coal. When compared to other warehouses, the silo can use space efficiently. The coal silo are consists of silo, tunnel and extractor. Of these, there are not sufficient study and design data on tunnel. It depends heavily upon trial and error method by field engineers with several years of experience. Recently, silos are constructed with a large size, and tunnel becomes to be in danger of severe cracking and collapse by a huge load of coal. So it is necessary to analyze structural safety for tunnel. In this study, the problems of the tunnel are analyzed by field data, and reinforcement of structural weak area using FE analysis has been carried out to design the tunnel satisfying structural safety. From FE Analysis, the reinforced model which does not exceed the yield strength of the material has been proposed.

Effect of the support pressure modes on face stability during shield tunneling

  • Dalong Jin;Yinzun Yang;Rui Zhang;Dajun Yuan;Kang Zhang
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.417-426
    • /
    • 2024
  • Shield tunneling method is widely used to build tunnels in complex geological environment. Stability control of tunnel face is the key to the safety of projects. To improve the excavation efficiency or perform equipment maintenance, the excavation chamber sometimes is not fully filled with support medium, which can reduce the load and increase tunneling speed while easily lead to ground collapse. Due to the high risk of the face failure under non-fully support mode, the tunnel face stability should be carefully evaluated. Whether compressive air is required for compensation and how much air pressure should be provided need to be determined accurately. Based on the upper bound theorem of limit analysis, a non-fully support rotational failure model is developed in this study. The failure mechanism of the model is verified by numerical simulation. It shows that increasing the density of supporting medium could significantly improve the stability of tunnel face while the increase of tunnel diameter would be unfavorable for the face stability. The critical support ratio is used to evaluate the face failure under the nonfully support mode, which could be an important index to determine whether the specific unsupported height could be allowed during shield tunneling. To avoid of face failure under the non-fully support mode, several charts are provided for the assessment of compressed air pressure, which could help engineers to determine the required air pressure for face stability.