• Title/Summary/Keyword: Tunnel Section

Search Result 791, Processing Time 0.025 seconds

Aerodynamic effects of subgrade-tunnel transition on high-speed railway by wind tunnel tests

  • Zhang, Jingyu;Zhang, Mingjin;Li, Yongle;Fang, Chen
    • Wind and Structures
    • /
    • 제28권4호
    • /
    • pp.203-213
    • /
    • 2019
  • The topography and geomorphology are complex and changeable in western China, so the railway transition section is common. To investigate the aerodynamic effect of the subgrade-tunnel transition section, including a cutting-tunnel transition section, an embankment-tunnel transition section and two typical scenarios for rail infrastructures, is selected as research objects. In this paper, models of standard cutting, embankment and CRH2 high-speed train with the scale of 1:20 were established in wind tunnel tests. The wind speed profiles above the railway and the aerodynamic forces of the vehicles at different positions along the railway were measured by using Cobra probe and dynamometric balance respectively. The test results show: The influence range of cutting-tunnel transition section is larger than that of the embankment-tunnel transition section, and the maximum impact height exceeds 320mm (corresponding to 6.4m in full scale). The wind speed profile at the railway junction is greatly affected by the tunnel. Under the condition of the double track, the side force coefficient on the leeward side is negative. For embankment-tunnel transition section, the lift force coefficient of the vehicle is positive which is unsafe for operation when the vehicle is at the railway line junction.

지하철 대단면 터널의 설계와 시공관리 사례 (Design and Construction of a Large Section Tunnel for a Subway Station)

  • 문상조;장석부;정준화
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.285-292
    • /
    • 1999
  • Recent development cases of transportation utilities using tunnelling method in metropolitan sites have been increased due to the heavily complex environments and restrictions of construction works. The progress of tunnel design and construction to be supported by the tunnel analysis and measurement techniques using computers have increased adoptions of large section tunnels. In this paper, many factors to be considered in designing large section tunnels are discussed and the case of the construction of the subway station tunnel which is recently completed is introduced. This tunnel has a width of 24 m, a height of 16 m, and a excavation section area of 366 ㎡.

  • PDF

터널구간 가선계의 집전성능 (Current Collection Performance of Catenary System within Tunnel Section)

  • 손건호;이승일;최연선
    • 한국철도학회논문집
    • /
    • 제8권1호
    • /
    • pp.51-56
    • /
    • 2005
  • A dynamic simulation program of a catenary-pantograph system including tunnel section and transient section is developed in this study. The simulation program can accommodate for the pantograph of two panheads and three d.o.f model. Using the developed program, the dynamic characteristics with a SCHUNK'S WBL 85-PANTOGRAPH are analyzed at the conventional TAEBAEK line and its tunnel section when the catenary system is supported by a tunnel bracket. The simulation results show that the variation of contact force md uplift displacement is allowable in general section and the entrance and exit of a tunnel, but the uplift displacement and the separation ratio within tunnel section is difficult to allow.

지하환기소 대단면 터널 시공 사례 연구 (A Case Study on the Construction of Large Cross Section Tunnel for Underground Ventilation System)

  • 노승환;최성욱;노상림
    • 터널과지하공간
    • /
    • 제27권4호
    • /
    • pp.195-204
    • /
    • 2017
  • 본 사례연구에서는 신림~봉천터널 지하환기소 대단면 터널의 시공 사례를 소개하였다. 환기갱(폭 7.8 m, 높이 6.6 m)에서 환기소(축류팬실, 폭 20.8 m, 높이 12.3 m)로 터널 단면이 확대되는 구간에 대해 안전성 및 시공성 등을 고려하여 점진적인 확대 굴착 방안 및 Q 시스템을 이용한 확폭 구간의 임시 보강 방안이 검토되었다. 확폭이 완료된 이후 대단면 터널은 현장의 암반조건을 확인하고, 전산해석을 이용한 터널의 안정성 검토 등을 통해 암반등급에 따라 굴진장을 일부 조정하고, 터널 상부 굴착을 분할 없이 전단면 굴착으로 변경하여 시공성을 향상시켰다. 본 사례연구에서 소개한 시공 사례가 향후 유사한 조건의 지하환기소 또는 4차로 도로 등의 대단면 터널의 설계 및 시공에 유용한 참고 자료가 될 수 있기를 기대한다.

터널구간 가선계의 집전성능 (Current Collection Performance of Catenary System within Tunnel Section)

  • 손건호;이승일;최연선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.767-772
    • /
    • 2004
  • A dynamic simulation program of a catenary-pantograph system including tunnel section and transient section is developed in this study. The simulation program can accommodate for the pantograph of two panheads and three d.o.f model. Using the developed program, the dynamic characteristics with a SCHUNK'S WBL 85-PANTOGRAPH is analyzed at the conventional TAEBAEK line and its tunnel section when the catenary system is supported by a tunnel bracket. The simulation results show that the variation of contact force and uplift displacement is allowable in general section and the entrance and exit of a tunnel, but the uplift displacement and the separation ratio within tunnel section is difficult to allow.

  • PDF

고속도로 터널부 도로 용량 감소율에 관한 연구 (A Study on the Road Capacity Reduction Rate of Freeway Tunnel Section)

  • 김선훈;이동민;황순천
    • 한국ITS학회 논문지
    • /
    • 제23권3호
    • /
    • pp.17-28
    • /
    • 2024
  • 본 연구에서는 고속도로 VDS 검지기 데이터를 활용하여 터널 구간과 일반 구간의 도로용량을 산정하여 비교하였으며, 터널 특성 요인에 따라 분류된 터널유형별 터널 진입 전 대비 터널 내부 도로용량 감소율을 분석하였다. 터널 구간과 일반 구간의 도로 용량을 비교하기 위해 5분 단위 VDS 검지기 데이터에 Product Limit Method(PLM)을 적용하였다. PLM으로 도출된 터널 구간 및 일반 구간의 도로 용량을 비교한 결과, 터널 구간은 일반 구간 대비 도로 용량이 약 6.5% 감소하였다. 터널 유형 분류를 위해 터널 연장과 터널 내 차로수를 변수로 활용하였으며, 각 기준에 의해 분류된 터널 집단별 도로 용량 감소율에는 차이가 있었다.

전산유동 해석을 이용한 수동의 유동 균질성 평가 (Estimation of Flow Uniformity in Water Tunnel by Using CFD Analysis)

  • 임영택;장조원;김문상
    • 한국항공운항학회지
    • /
    • 제12권3호
    • /
    • pp.13-24
    • /
    • 2004
  • It is easier to view flow visualization by using a water tunnel rather than a smoke wind tunnel because of low speed at same Reynolds number. Using a water tunnel also produces more definite flow visualization by the use of various color dyes. The flow uniformity in test section is very significant for accuracy of the test because most flow experiments elicit results through the installation of a model in uniform flow. The purpose of small-size desktop-type water tunnel is not to produce quantitative measurements, but rather to give a visualization of the fluid flow phenomenon. However, uniformity in the test section affects the accuracy of the results. Accordingly, this research estimates uniformity in a water tunnel test section by using the commercially available CFD code FLUENT. Results of the CFD analysis show that the flow uniformity of the test section is good.

  • PDF

수직형 풍동을 응용한 고공강하 시뮬레이터의 설계에 대한 연구 (A Study on the Design of Free-Fall Simulator using concept of Vertical Wind Tunnel)

  • 최상길;조진수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.447-452
    • /
    • 2000
  • In this study, the design of Free-Fall Simulator was carried out using concept of vertical wind tunnel. Free-Fall Simulator is not an experimental equipment but a training equipment. Therefore Free-Fall Simulator needs a large training section compared with test section of wind tunnel and has critical limit of height. These limits bring about the difficulty of design for a return passage. Due to small area ratio, the downstream flow of training section with high speed is not decelerated adequately to the fan section. High-speed flow leads to great losses in the small area ratio diffuser and corner. So design of diffusers and corners located between training section and fan section has a great effect on the Free-Fall Simulator performance. This study used an estimation method of subsonic wind tunnel performance. It considered each section of Free-Fall Simulator as an independent section. Therefore loss of one section didn't affect loss of other sections. Because losses of corner with vane and $1^{st}$ diffuser are most parts of overall Free-Fall Simulator, this study focused on the design of these sections.

  • PDF

고속화에 따른 철도터널의 단면규모 결정요소에 대한 고찰 (A Study on the Principal Factors of Rail Tunnel Cross-Section Design due to High Speed)

  • 류동훈;이현정;한상연;신현일;정병률;송충렬
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1487-1501
    • /
    • 2011
  • Recently, fast-growing up railway transportations. Because, regional traffic congestion problem solving and a period of rapid expansion to meet the demand of industries. In addition the government also suggest to new paradigm for the future 'Low Carbon, Green Growth' is presented as a new national vision. To meet the social needs and the time demands, Last of the railway increase very long tunnels and huge deep tunnels. Especially this trend accelerated high speed up in the tunnel, the revision of design criteria and research challenges are being actively improved. Mainly in the tunnel cross-section was under the control of the vehicle train speed 150km/hr by the construction of the vehicle cross-section of the tunnel. More than 200km/hr rail tunnel depending on the vehicle's speed caused the tunnel to the pressure fluctuations will be governed by the aerodynamic changes. Considering the economy to ensure the optimum cross-section of the railway tunnel to the description scheme is selected cross-section of the railway tunnel to determine the size domestic or international railway tunnel for the elements((based on fast Algorithm design criteria, the center line spacing, streetcar line, cross-sectional shape, sectoral issues, such as interface and aerodynamics) based on design practices and to review results. In this study, to propose guidelines depending on the size of a railway tunnel cross section for the size of the determining reasonable factors when designing the railway tunnel and cost-effective standards guidelines.

  • PDF

Investigation on vortex-induced vibration of a suspension bridge using section and full aeroelastic wind tunnel tests

  • Sun, Yanguo;Li, Mingshui;Liao, Haili
    • Wind and Structures
    • /
    • 제17권6호
    • /
    • pp.565-587
    • /
    • 2013
  • Obvious vortex induced vibration (VIV) was observed during section model wind tunnel tests for a single main cable suspension bridge. An optimized section configuration was found for mitigating excessive amplitude of vibration which is much larger than the one prescribed by Chinese code. In order to verify the maximum amplitude of VIV for optimized girder, a full bridge aeroelastic model wind tunnel test was carried out. The differences between section and full aeroelastic model testing results were discussed. The maximum amplitude derived from section model tests was first interpreted into prototype with a linear VIV approach by considering partial or imperfect correlation of vortex-induced aerodynamic force along span based on Scanlan's semi-empirical linear model. A good consistency between section model and full bridge model was found only by considering the correlation of vortex-induced force along span.