• Title/Summary/Keyword: Tunnel Model Experiments

Search Result 218, Processing Time 0.023 seconds

A Study on the Earth Pressure Characteristic of Cut-and-Cover Tunnel Lining by Centrifuge Model Experiment (원심모형시험에 의한 복개터널 복공의 토압특성에 관한 연구)

  • Lee, Myung-Woog;Park, Byung-Soo;Jung, Gil-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.107-116
    • /
    • 2004
  • This thesis is results of experimental works on the behavior of the cut-and-cover tunnel. Centrifuge model tests were performed to simulate the behavior of the cut-and-cover tunnels having cross sections of national road and subway tunnels. Model experiments were carried out with changing the cut slope and the slope of filling ground surface. Displacements of tunnel lining resulted from artificially accelerated gravitational force up to 40g of covered material used in model tests, were measured during centrifuge model tests. In model tests, Jumunjin Standard Sand with the relative density of 80 % and the zinc plates were used for the covered material and the flexible tunnel lining, respectively. Basic soil property tests were performed to obtain it's the property of Jumumjin Standard Sand. Shear strength parameters of Jumunjin Standard Sand were obtained by performing the triaxial compression tests. Direct shear tests were also carried out to find the mechanical properties of the interface between the lining and the covered material. Compared results model tests estimation with respect to displacements of the lining.

  • PDF

Performance evaluation of an underwater body and pumpjet by model testing in cavitation tunnel

  • Suryanarayana, Ch.;Satyanarayana, B.;Ramji, K.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.57-67
    • /
    • 2010
  • Experimental investigations were carried out on an Axi-symmetric Body Model fitted with Pump-jet Propulsor (PJP) in the Cavitation Tunnel at Naval Science and Technological Laboratory (NSTL). The tests were intended for evaluating the propulsion characteristics of the body and propulsor. The self propulsion point of the model for two configurations was determined after finding the corrections for tunnel blockage effects and differences in model length at zero trim. The results were found to match closely with the towing tank results. The rotor and stator torques also matched closely over full range of experiment. Further experiments were carried out on the body at $4.5^{\circ}$ angle of trim to investigate the propulsive performance and assess the operational difficulties in the sea. The results indicated an increase in resistance and decrease in rotor thrust; but the balance of torques between the rotor and stator was undisturbed, causing no concern to vehicle roll.

Reliability analysis of tunnel face stability considering seepage effects and strength conditions

  • Park, Jun Kyung
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.331-338
    • /
    • 2022
  • Face stability analyses provides the most probable failure mechanisms and the understanding about parameters that need to be considered for the evaluation of ground movements caused by tunneling. After the Upper Bound Method (UBM) solution which can consider the influence of seepage forces and depth-dependent effective cohesion is verified with the numerical experiments, the probabilistic model is proposed to calculate the unbiased limiting tunnel collapse pressure. A reliability analysis of a shallow circular tunnel driven by a pressurized shield in a frictional and cohesive soil is presented to consider the inherent uncertainty in the input parameters and the proposed model. The probability of failure that exceeding a specified applied pressure at the tunnel face is estimated. Sensitivity and importance measures are computed to identify the key parameters and random variables in the model.

A Study of Interactions Between Perpendicularly Spaced Tunnels (상하교차터널의 상호거동에 대한 연구)

  • Kim, Sang-Hwan;Lee, Hyung-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.273-280
    • /
    • 2003
  • This paper describes a study of the effect of shield tunnel construction on the liners of nearby existing perpendicular tunnels. The research programme investigated the influence of tunnel proximity and alignment, liner stiffness on the nature of the interactions between closely spaced tunnels in clay. A total of two sets of carefully controlled 1g physical model tests, including the same test for repeatability, were performed. A cylindrical test tank was developed and used to produce clay samples of Speswhite kaolin. In each of the tests, three model tunnels were installed in order to conduct two interaction experiments in one clay sample. The tunnel liners were installed using a model tunnelling machine that was designed and developed to simulate the construction of a full scale shield tunnel. The first tunnel liner was instrumented to investigate its behaviour due to the installation of each of the new tunnels. The interaction mechanisms observed from the physical model tests are discussed and interpreted.

The study for the aerodynamic effects of air-shafts in the railway tunnel (철도터널 통풍공의 공기역학적 성능에 대한 연구)

  • Kim, Dong-Hyeon;Kang, Bu-Byoung;Shin, Min-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.341-348
    • /
    • 2001
  • The purpose of present study is to investigate for reducing pressure fluctuations in the case of installing the air-shafts on the side wall of the tunnel with small cross-sectional area on conventional line. Experiments were performed with a 1/61-scale moving model rig for the tunnel of 0.764 km length in the condition of tunnel cross-section area of $28 m^2$. According to the results, the maximum pressure fluctuation is reduced by 45 % for 19 air-shafts. This results have the speed-up effects of about 33.4 km/h for the train running in tunnel.

  • PDF

A GUIDE FOR NUMERICAL WIND TUNNEL ANALYSIS IN ORDER TO PREDICT WIND LOAD ON A BUILDING (건축물의 풍하중을 예측하기 위한 수치풍동기법)

  • Lee, Mung-Sung;Lee, June-Hee;Hur, Nahm-Keon;Choi, Chang-Koon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.5-9
    • /
    • 2010
  • A numerical wind tunnel simulation is performed in order to predict wind loads acting on a building. The aim of the present study is to suggest a guideline for the numerical wind tunnel analysis, which could provide more detail wind load distributions compared to the wind code and expensive wind tunnel experiments. To validate the present numerical simulation, wind-induced loads on a 6 m cube model is predicted. Atmospheric boundary layer is used as a inlet boundary condition. Various effect of numerical methods are investigated such as size of computational domain, grid density, turbulence model and discretization scheme. The appropriate procedure for the numerical wind tunnel analysis is suggested through the present study.

  • PDF

The aerodynamic performance of air-shafts with different inner diameters in the railroad tunnel (철도터널 통풍공의 내경변화에 따른 공기역학적 성능)

  • Kim, Dong-Hyeon;Kang, Bu-Byoung;Shin, Min-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.578-584
    • /
    • 2001
  • Purpose of the present study is to investigate the aerodynamic performances of air-shafts with different inner diameters in a single track tunnel for reducing pressure fluctuations and micro pressure waves. Three configurations of air-shafts with different inner diameters were examined for comparison of aerodynamic performances. Experiments were performed with a 1/61-scale moving model rig for the tunnel of 0.764 km length and the train of 4 cars per 1 unit. The results showed the reduction effect of the maximum pressure fluctuations in tunnel and micro-pressure waves radiating towards the surroundings from the tunnel exit according to the increase of the diameter of 10 air-shafts spaced equally.

  • PDF

Wind tunnel blockage effects on aerodynamic behavior of bluff body

  • Choi, Chang-Koon;Kwon, Dae-Kun
    • Wind and Structures
    • /
    • v.1 no.4
    • /
    • pp.351-364
    • /
    • 1998
  • In wind tunnel experiments, the blockage effect is a very important factor which affects the test results significantly. A number of investigations into this problem, especially on the blockage correction of drag coefficient, have been carried out in the past. However, only a limited number of works have been reported on the wind tunnel blockage effect on wind-induced vibration although it is considered to be fairly important. This paper discusses the aerodynamic characteristics of the square model and square model with corner cut based on a series of the wind tunnel tests with various blockage ratios and angles of attack. From the test results, the aerodynamic behavior of square models with up to 10% blockage ratio are almost the same and square models with up to 10% blockage ratio can be tested as a group which behaves similarly.

Evaluation of Reducing Cross Section of the Partial Drainage Shield Tunnel Segment using the Model Experiments (축소모형실험을 통한 부분배수 쉴드터널의 세그먼트 단면 축소 가능성 평가)

  • Ma, Sang Joon;Lee, Young Sub;Kim, Dong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.387-396
    • /
    • 2015
  • The existing shield tunnel has constructed in the concept of non-drainage uniformly, but the leak has become a problem in the construction and management. The Shield tunnel design allowed for the water and earth pressure bring about the increasing segment thickness and the construction costs. In order to improve these problems, the study of the partial drainage shield tunnel is in progress. In this study, th model experiment was performed to confirm the possibility of the partial drainage shield tunnel. And the water and earth pressure was measured in drainage and undrained condition. Based on the results of model experiments, the effect of water pressure reduction was confirmed by reviewed the structure stability of the real design case.

Development of A New Facility for Moving Model Test (한국형 터널 미기압파 저감 시험기 개발)

  • 김동현;양신추;오일근
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.146-154
    • /
    • 1999
  • The test facility of the 1/60-scale models for the train-tunnel interactions was recently developed to investigate the effects of entry portal shapes, flood shapes and air-shafts for reducing the micro-pressure waves radiating to the surroundings of the tunnel exits by KRRI in Korea. The launching system of train model was chosen as air-gun type. In present test rig, after train model is launched, the blast wave by the driver did not enter to inside of the tunnel model. The train model is guided on the one-wire system from air-gun driver to the brake parts of test facility end. Some cases of the experiments were compared with numerical simulations to prove the test facility.

  • PDF