• Title/Summary/Keyword: Tunnel Failure

Search Result 443, Processing Time 0.021 seconds

An Experimental Study on the Evaluation of Early-Age Mechanical Properties of Polymer-Based Thin Spray-on Liners (폴리머 기반 박층 라이너의 초기재령 특성 평가를 위한 실험적 연구)

  • Chang, Soo-Ho;Lee, Gyu-Phil;Han, Jin-Tae;Park, Young-Taek;Choi, Soon-Wook;Hwang, Gwi-Sung;Choi, Myung-Sik
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.413-427
    • /
    • 2013
  • Thin Spray-on Liners(TSLs) based on polymer materials have been considered as an alternative to shotcrete and wire mesh in relatively fair rock conditions, and used in mines since 1990s. Nevertheless, Few experimental studies on their mechanical properties necessary for the evaluation of their bearing capacities as a support member have been carried out. In this study, tensile and bond strengths of two kinds of TSLs with different material compositions were measured at the age of 7 days. In addition, two kinds of bending tests proposed by EFNARC (2008) to simulate representative failure mechanisms of TSLs were carried out on the same materials and curing age as in tension and pull-out tests. From the tests, tensile strength of a TSL is shown to increase as its content of polymer is higher. In contrast, its bond strength seems to be in inverse proportion to its polymer content. Especially, the TSL material in which a cementitious component is included with relatively smaller polymer content shows a faster hardening characteristic which results in higher resistance to de-bonding between a TSL and a substrate. As a result, it is shown that the performance of TSLs might be dependent upon its corresponding polymer content.

Factor Analysis and LISREL Model Development for Landscape Estimation on The Road Cutting Slope Area (도로절토사면(절개면)의 경관평가를 위한 요인분석 및 LISREL 모형구축)

  • 지길용;박일동;임성빈;금기정
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.33-43
    • /
    • 2003
  • In South Korea, about 74% of total area is mountainous terrain It is therefore inevitable to make tunnel or cutting slope for road construction. According to a related survey, approximately 2,400 sites of cutting slopes were found from 24 different routes of roadway which is overall 900 km long, implying 2.7 slopes per 1km of roadway on average. Even though safety matter such as the slope failure prevention would be the most important consideration for the construction of cutting slopeslandscape of sloped face is nowadays becoming another important factor due to the growing demand for the driver-friendly road environment Various construction methods which attain this goal should therefore be considered in the design stage of the roadway. The objective of this study is to identify important factors in landscape of sloped-cut roadway using factor analysis. For this, 10 main treatment methods of sloped-cut fact were analyzed. This study employed the LISREL(structural analysis of common variance) model in order to capture the qualitative characteristics of the slope-cut road and examine the relationship between the suey error and the variable(s). As a result, more reasonable landscape evaluation model for the road design and construction was proposed.

A caving self-stabilization bearing structure of advancing cutting roof for gob-side entry retaining with hard roof stratum

  • Yang, Hongyun;Liu, Yanbao;Cao, Shugang;Pan, Ruikai;Wang, Hui;Li, Yong;Luo, Feng
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • An advancing cutting roof for gob-side entry retaining with no-pillar mining under specific geological conditions is more conducive to the safe and efficient production in a coalmine. This method is being promoted for use in a large number of coalmines because it has many advantages compared to the retaining method with an artificial filling wall as the gateway side filling body. In order to observe the inner structure of the gateway cutting roof and understand its stability mechanism, an equivalent material simulation experiment for a coalmine with complex geological conditions was carried out in this study. The results show that a "self-stabilization bearing structure" equilibrium model was found after the cutting roof caving when the cut line deviation angle was unequal to zero and the cut height was greater than the mining height, and the caving roof rock was hard without damage. The model showed that its stability was mainly controlled by two key blocks. Furthermore, in order to determine the optimal parameters of the cut height and the cut line deviation angle for the cutting roof of the retaining gateway, an in-depth analysis with theoretical mechanics and mine rock mechanics of the model was performed, and the relationship between the roof balance control force and the cut height and cut line deviation angle was solved. It was found that the selection of the values of the cut height and the cut line deviation angle had to conform to a certain principle that it should not only utilize the support force provided by the coal wall and the contact surface of the two key blocks but also prevent the failure of the coal wall and the contact surface.

Polygonal Grain-Based Distinct Element Modelling of Mechanical Characteristics and Transverse Isotropy of Rock (다각형 입자 기반 개별요소모델을 통한 암석의 역학적 특성과 횡등방성 모사)

  • Park, Jung-Wook;Park, Chan;Ryu, Dongwoo;Choi, Byung-Hee;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.235-252
    • /
    • 2016
  • This study presents a methodology to reproduce the mechanical behavior of isotropic or transversely isotropic rock using the polygonal grain-based distinct element model. A numerical technique to monitor the evolution of micro-cracks during the simulation was developed in the present study, which enabled us to examine the contribution of tensile cracking and shear cracking to the progressive process of the failure. The numerical results demonstrated good agreement with general observations from rock specimens in terms of the behavior and the evolution of micro-cracks, suggesting the capability of the model to represent the mechanical behavior of rock. We also carried out a parametric study as a fundamental work to examine the relationships between the microscopic properties of the constituents and the macroscopic behavior of the model. Depending on the micro-properties, the model exhibited a variety of responses to the external load in terms of the strength and deformation characteristics. In addition, a numerical technique to reproduce the transversely isotropic rock was suggested and applied to Asan gneiss from Korea. The behavior of the numerical model was in good agreement with the results obtained in the laboratory-scale experiments of the rock.

Numerical modelling of Fault Reactivation Experiment at Mont Terri Underground Research Laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2) (스위스 Mont Terri 지하연구시설 단층 내 유체 주입시험 모델링: 국제공동연구 DECOVALEX-2019 Task B(Step 2))

  • Park, Jung-Wook;Guglielmi, Yves;Graupner, Bastian;Rutqvist, Jonny;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.197-213
    • /
    • 2019
  • We simulated the fault reactivation experiment conducted at 'Main Fault' intersecting the low permeability clay formations of Mont Terri Underground Research Laboratory in Switzerland using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. We formulate the hydro-mechanical coupling relation of hydraulic aperture to consider the elastic fracture opening and failure-induced dilation for reproducing the abrupt changes in injection flow rate and monitoring pressure at fracture opening pressure. A parametric study was conducted to examine the effects of in-situ stress condition and fault deformation and strength parameters and to find the optimal parameter set to reproduce the field observations. In the best matching simulation, the fracture opening pressure and variations of injection flow rate and monitoring pressure showed good agreement with field experiment results, which suggests the capability of the numerical model to reasonably capture the fracture opening and propagation process. The model overestimated the fault displacement in shear direction and the range of reactivated zone, which was attributed to the progressive shear failures along the fault at high injection pressure. In the field experiment results, however, fracture tensile opening seems the dominant mechanism affecting the hydraulic aperture increase.

Grain-Based Distinct Element Modeling of Thermoshearing of Rock Fracture: DECOVALEX-2023 Task G (입자기반 개별요소모델을 이용한 암석 균열의 Thermoshearing 거동 해석: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook, Park;Li, Zhuang;Jeong Seok, Yoon;Chan-Hee, Park;Changlun, Sun;Changsoo, Lee
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.568-585
    • /
    • 2022
  • In the present study, we proposed a numerical method for simulating thermally induced fracture slip using a grain-based distinct element model (GBDEM). As a part of DECOVALEX-2023, the thermo-mechanical loading test on a saw-cut rock fracture conducted at the Korea Institute of Civil Engineering and Building Technology was simulated. In the numerical model, the rock sample including a saw-cut fracture was represented as a group of random Voronoi polyhedra. Then, the coupled thermo-mechanical behavior of grains and their interfaces was calculated using 3DEC. The key concerns focused on the temperature evolution, thermally induced principal stress increment, and fracture normal and shear displacements under thermo-mechanical loading. The comparisons between laboratory experimental results and the numerical results revealed that the numerical model reasonably captured the heat transfer and heat loss characteristics of the rock specimen, the horizontal stress increment due to constrained displacement, and the progressive shear failure of the fracture. However, the onset of the fracture slip and the magnitudes of stress increment and fracture displacement showed discrepancies between the numerical and experimental results. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study.

A Study on Evaluation of Rock Brittleness Index using Punch Penetration Test (압입시험을 이용한 암석의 취성도 평가에 관한 연구)

  • Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.33 no.1
    • /
    • pp.29-41
    • /
    • 2023
  • The brittleness of rocks plays an important role in determining the fragmentation and failure behavior of rock. However, there is still no standard method to evaluate the brittleness of rock, and previous studies have suggested the several definitions for estimation of brittleness of rock. Even in the process of mechanical rock excavation and drilling, the brittleness of rock is considered as an important property for evaluating the excavation efficiency of mechanical excavators or boreability of rock. The previous studies have been carried out to investigate the correlation between different brittleness of rock and cutting efficiency and boreability of rock. This study introduced a method for calculating the brittleness of rock from punch penetration test, and analyzed the correlation between the brittleness of rock calculated by the uniaxial compressive and Brazilian tensile strengths and that from punch penetration test. From the results of correlation analysis, the relationship between various brittleness was confirmed, and it was found that PSI and BI3 showed a good correlation with the strength-based brittleness index. In addition, the results indicated that B3 and B4 are suitable to represent the brittleness of rock in the field of mechanical rock excavation.

Directional Variation of Apparent Elastic Constants and Associated Constraints on Elastic Constants in Transversely Isotropic Rocks (횡등방성 암석에서 겉보기 탄성정수의 방향성 변화와 탄성정수 제약조건)

  • Youn-Kyou Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.150-168
    • /
    • 2023
  • The anisotropic behavior of rocks is primarily attributed to the directional arrangement of rock-forming minerals and the distribution characteristics of microcracks. Notably, sedimentary and metamorphic rocks often exhibit distinct transverse isotropy in terms of their strength and deformation characteristics. Consequently, it is crucial to gain accurate insights into the deformation and failure characteristics of transversely isotropic rocks during rock mechanics design processes. The deformation of such rocks is described by five independent elastic constants, which are determined through laboratory testing. In this study, the characteristics of the directional variation of apparent elastic constants in transversely isotropic rocks were investigated using experimental data reported in the literature. To achieve this, the constitutive equation proposed by Mehrabadi & Cowin was introduced to calculate the apparent elastic constants more efficiently and systematically in a rotated Cartesian coordinate system. Four transversely isotropic rock types from the literature were selected, and the influence of changes in the orientation of the weak plane on the variations of the apparent elastic modulus, apparent shear modulus, and apparent Poisson's ratio was analyzed. Based on the investigation, a new constraint on the elastic constants has been proposed. If the proposed constraint is satisfied, the directional variation of the apparent elastic constants in transversely isotropic rocks aligns with intuitive predictions of their tendencies.

Studying the Comparative Analysis of Highway Traffic Accident Severity Using the Random Forest Method. (Random Forest를 활용한 고속도로 교통사고 심각도 비교분석에 관한 연구)

  • Sun-min Lee;Byoung-Jo Yoon;WutYeeLwin
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.156-168
    • /
    • 2024
  • Purpose: The trend of highway traffic accidents shows a repeating pattern of increase and decrease, with the fatality rate being highest on highways among all road types. Therefore, there is a need to establish improvement measures that reflect the situation within the country. Method: We conducted accident severity analysis using Random Forest on data from accidents occurring on 10 specific routes with high accident rates among national highways from 2019 to 2021. Factors influencing accident severity were identified. Result: The analysis, conducted using the SHAP package to determine the top 10 variable importance, revealed that among highway traffic accidents, the variables with a significant impact on accident severity are the age of the perpetrator being between 20 and less than 39 years, the time period being daytime (06:00-18:00), occurrence on weekends (Sat-Sun), seasons being summer and winter, violation of traffic regulations (failure to comply with safe driving), road type being a tunnel, geometric structure having a high number of lanes and a high speed limit. We identified a total of 10 independent variables that showed a positive correlation with highway traffic accident severity. Conclusion: As accidents on highways occur due to the complex interaction of various factors, predicting accidents poses significant challenges. However, utilizing the results obtained from this study, there is a need for in-depth analysis of the factors influencing the severity of highway traffic accidents. Efforts should be made to establish efficient and rational response measures based on the findings of this research.

Open Heart Surgery after Pulmonary Artery Banding in Children (소아에서 폐동맥밴딩술후의 개심술 치료)

  • 김근직;천종록;이응배;전상훈;장봉현;이종태;김규태
    • Journal of Chest Surgery
    • /
    • v.32 no.9
    • /
    • pp.781-789
    • /
    • 1999
  • Background: Pulmonary artery banding(PAB) accompanies some risks in the aspect of band complications and mortality in the second-stage operation. To assess these risks of the second-stage operation after PAB, we reviewed the surgical results of the second-stage operation in the pediatric patients who had undergone PAB in infancy. Material and Method: From May 1988 to June 1997, a total of 29 patients with preliminary PAB underwent open heart surgery. Ages ranged from 2 to 45 months(mean 20.6$\pm$9.0 months). Preoperative congestive heart failure conditions were improved after PAB(elective operation group) in 27 patients, but early second-stage procedures were required in the remaining 2 patients due to sustaining congestive heart failure(early operation group). Preoperative surgical indications included 2 double outlet right ventricles(DORV group) and 27 ventricular septal defects as the main cardiac anomaly(VSD group). Result: The mean time interval from PAB to the second-stage operation was 15.5$\pm$8.7 months(range 5 days to 45 months). One patient in the DORV group underwent intraventricular tunnel repair and modified Glenn procedure in the other. In the VSD group, the VSD was closed with a Dacron patch in all patients. Concomitant procedures included a right ventricular infundibulectomy in 4 patients and a valvectomy of the dysplastic pulmonary valve in 1 patient. At the second-stage operations, pulmonary angioplasty was required due to the stenotic banding sites in 18 patients. One patient underwent complete ligation of the main pulmonary artery with the modified Glenn procedure. The mortality at the second-stage operation was 17.2%(5 patients). Causes of death were 4 low cardiac output, and 1 autoimmune hemolytic anemia. Diagnosis with DORV and the early operative group were the risk factors for operative death in this series. There was 1 late death. Conclusion: This study revealed the second-stage operation for pulmonary artery debanding and closure of VSD in children was complicated by the correction of the acquired lesions with a significantly high incidence of morbidity and early postoperative deaths. Primary repair is recommended for isolated VSD, if possible.

  • PDF