Tunnel boring machine (TBM)의 설계에 있어서 지반과 직접적으로 맞닿아 절삭을 담당하는 커터헤드의 설계에 따라서 장비의 굴진효율이 달라지게 된다. 디스크커터는 배치되는 위치에 따라 센터 커터 존, 이너 커터 존, 트렌지션 커터 존으로 구분된다. 기존에도 페이스커터의 최적 절삭조건을 규명하기 위한 연구는 많이 진행되어 왔으나, 트렌지션 커터의 최적 절삭조건을 규명하기 위한 연구는 상대적으로 미진하였다. 본 연구에서는 트렌지션 커터의 최적의 절삭조건을 규명하기 위해 개별요소법 수치해석을 수행하고 트렌지션 커터 사이의 각도에 따른 비에너지 곡선을 작도하여 최적 절삭조건을 알아보고자 하였다. 수치해석 결과 전이영역에서 최소 비에너지를 보이는 트렌지션 커터 사이의 각도 9°인 것으로 확인되었다. 이를 트렌지션 커터의 경사각에 따라 3가지 영역으로 구분하고 영역별 디스크커터 사이의 각도와 비에너지를 정리한 결과 트렌지션 커터의 경사각이 커질수록 최적 비에너지를 보이는 트렌지션 커터 사이의 각도는 10°에서 8°까지 점차 감소하는 경향을 보였다. 이러한 결과는 기존에 사용되고 있는 트렌지션 커터의 설계 결과와 유사한 경향으로써, 본 연구의 결과를 밑받침한다.
본 논문에서는 TBM의 굴진성능 평가를 위한 실내시험 중 하나인 압입시험의 시험과 결과 분석방법에 대하여 연구하였다. 압입시험은 암석의 굴진저항 및 취성도를 나타내는 여러 지수들을 산정하고 이를 통해 TBM의 굴진율 및 추력을 직접적으로 추정할 수 있는 유용한 실험으로 알려져 있으나 국내에서는 아직 관련된 연구가 수행된 바 없으며 규격화된 시험방법이나 결과해석방법 역시 제시되지 못하고 있는 실정이다. 본 연구에서는 압입시험의 시험 장비를 재구성하여 제작하였고 다양한 조건에 대하여 시험을 수행하여 합리적인 시험방법과 시편의 크기에 대하여 고찰하였다. 또한 국내의 6개 암종에 대하여 압입시험을 수행하고 하중지수의 산정방법에 대하여 연구하였으며 하중지수로써 PLI와 MLI를 제안하였다. 본 연구에서 제안된 지수인 PLI와 MLI는 동일한 암종을 대상으로 수행된 선형절삭시험결과와 밀접한 상관관계를 보였으며 하중지수를 통해 개략적으로 예측된 단일 디스크커터의 수직하중은 실험값과 10% 오차를 보였다. 압입시험은 TBM의 성능예측을 위한 유용한 실험법임을 확인할 수 있었으며 본 연구는 이를 위한 기초연구로서 그 활용도가 높을 것으로 기대된다.
TBM 공법은 굴착면 안정성 확보 및 주변환경에 비치는 영향을 최소화하기 때문에 도심지나 하·해저터널 등에서 적용 사례가 증가하는 추세이다. 디스크 커터의 수명을 예측하는 대표적인 모델 중 NTNU모델은 커터수명지수(Cutter Life Index, CLI)를 주요 매개 변수로 활용하지만 복잡한 시험절차와 시험장비의 희귀성으로 측정에 어려움이 있다. 본 연구에서는 다중선형회귀분석과 트리 기반의 머신러닝 기법으로 암석물성을 활용하여 CLI를 예측하였다. 문헌 조사를 통해 암석의 일축압축강도, 압열인장강도, 등 가석영함량과 세르샤 마모지수 등을 포함한 데이터베이스를 구축하였고 파생변수를 계산하여 추가하였다. 다중선형회귀분석은 통계적 유의성과 다중공선성을 고려하여 입력 변수를 선정하였고 머신러닝 예측 모델은 변수 중요도를 기반으로 입력 변수를 선정하였다. 학습용과 검증용 데이터를 8:2로 나누어 모델 간 예측 성능을 비교한 결과 XGBoost가 최적의 모델로 선정되었다. 본 연구에서 도출된 다중선형회귀모델과 XGBoost모델을 선행 연구와 예측 성능을 비교하여 타당성을 확인하였다.
쉴드TBM의 제작기술 발전과 시공경험 축적으로, 쉴드터널은 전력, 통신 및 상하수도와 같은 소구경 터널에서 도로 및 철도와 같은 대구경 터널로 확대되고 있으며, 그에 따라 병설쉴드터널의 적용도 증가하고 있다. Peck(1969)에 의해 연약지반에서 단선쉴드터널의 지표침하형상이 Gaussian distribution으로 표현될 수 있음이 제시된 이후, 현장계측, 실내모형실험 및 수치해석 등의 방법을 통해 많은 연구에서 이의 적정성이 확인되었다. 본 연구는 현장 계측된 병설쉴드터널의 지표침하로부터 후행 터널(2nd tunnel)에 의한 추가 지표침하 형상을 표현하기 위해 침하형상의 좌·우측에 Gaussian curve를 각각 적용함으로써, 침하형상을 보다 정확히 표현할 수 있음을 알 수 있었다.
The objective of this study is to estimate the distribution of a zone disturbed by excavation (EDZ) around tunnels that have been excavated at about 500 m depth in pre-Tertiary hard sedimentary rock. One of the most important tasks is to evaluate changes in the dynamic stability and permeability of the rock around the tunnels, by investigating the properties of the rock after the excavation. We performed resistivity and acoustic tomography using two boreholes, 5 m in length, drilled horizontally from the wall of a tunnel in pre-Tertiary hard conglomerate. By these methods, we detected a low-resistivity and low-velocity zone 1 m in thickness around the wall of the tunnel. The resulting profiles were verified by permeability and evaporation tests performed at the same boreholes. This anomalous zone matched a high-permeability zone caused by open fractures. Next, we performed resistivity monitoring along annular survey lines in a tunnel excavated in pre-Tertiary hard shale by a tunnel-boring machine (TBM). We detected anomalous zones in 2D resistivity profiles surrounding the tunnel. A low-resistivity zone 1 m in thickness was detected around the tunnel when one year had passed after the excavation. However, two years later, the resistivity around the tunnel had increased in a portion, about 30 cm in thickness, of this zone. To investigate this change, we studied the relationship between groundwater flow from the surroundings and evaporation from the wall around the tunnel. These features were verified by the relationship between the resistivity and porosity of rocks obtained by laboratory tests on core samples. Furthermore, the profiles matched well with highly permeable zones detected by permeability and evaporation tests at a horizontal borehole drilled near the survey line. We conclude that the anomalous zones in these profiles indicate the EDZ around the tunnel.
본 연구에서는 TBM의 관입속도 예측에 대한 경험적 모델을 비교하기 위하여 현장사례를 이용하여 관입속도를 예측하였으며, 예측결과와 시공 시의 실측치를 비교 분석하여 합리적인 모델을 평가하였다. 관입속도 예측은 일축압축강도를 이용한 모델과 암석의 특성 및 TBM의 장비 특성을 고려한 모델로 적용하였다. 사례현장은 대부분 편마암으로 구성되어 있으며, 절리가 발달되어 약선대가 존재하기 때문에 암석의 일축압축강도가 불규칙적으로 나타났다. 일축압축강도를 이용한 예측결과에서 Graham(1976)의 모델은 낮은 강도의 경우, 비현실적인 예측결과가 나타나는 것으로 분석되었다. 평균 관입율을 이용한 각 모델들의 신뢰성을 분석한 결과, 암석의 특성 및 TBM 기계적 특성을 합리적으로 반영한 NTNU 모델(1998)이 가장 높은 것으로 확인되었다. 그러나 실측치와 비교한 결과에서는 일축압축강도를 바탕으로 예측하는 Tarkoy의 모델(1986)이 사례현장의 특성과 일치하는 것으로 분석되었다. 즉, TBM의 관입속도 예측 시에는 대상 암종, 지질특성 및 TBM의 장비 특성을 모두 고려하여 다양한 모델을 이용한 합리적인 예측이 수행되어야 한다.
개별요소법(Discrete Element Method, DEM)은 다수의 작은 입자들의 운동 및 상호영향을 계산하여 시스템의 거동을 해석하는 수치해석법으로써, 실제 화학공학, 약학, 토목공학, 재료과학, 식품공학 등 다양한 산업현장에서 적용되고 있다. 본 연구에서는 DEM 기법에 근거한 입자 역학 전용 해석 상용 소프트웨어를 사용하여 스포크타입 토압식 쉴드TBM 굴착성능을 평가하기 위한 예비 해석을 수행하였다. TBM에 대한 해석은 커터헤드의 회전속가 다른 2가지 조건에 대해 수행되었다. 해석을 진행하는 동안 커터헤드면에 작용하는 저항 토크, 커터헤드면과 쉴드면에 작용하는 압축력, 스크루 오거를 통해 배출되는 토사의 양을 검토하였다. 해석을 통해 DEM 해석을 이용한 TBM 장비 모델링의 적용성을 검토하였다.
This case study presented a simplified failure mechanism approach used as a preliminary deformation prediction for the Mexico City's metro system expansion. Because of the Mexico City's difficult subsoils, Line 12 project was considered one of the most challenging projects in Mexico. Mexico City's subsurface conditions can be described as a multilayered stratigraphy changing from soft high plastic clays to dense to very dense cemented sands. The Line 12 trajectory crossed all three main geotechnical Zones in Mexico City. Starting from to west of the City, Line 12 was projected to pass through very dense cemented sands corresponding to the Foothills zone changing to the Transition zone and finalizing in the Lake zone. Due to the change in the subsurface conditions, different constructions methods were implemented including the use of TBM (Tunnel Boring Machine), the NATM (New Austrian Tunneling Method), and cut-and-cover using braced Diaphragm walls for the underground section of the project. Preliminary crown and excavation front deformations were determined using a simplified failure mechanism prior to performing finite element modeling and analysis. Results showed corresponding deformations for the crown and the excavation front to be 3.5cm (1.4in) and 6cm (2.4in), respectively. Considering the complexity of Mexico City's difficult subsoil formation, construction method selection becomes a challenge to overcome. The use of a preliminary results in order to have a notion of possible deformations prior to advanced modeling and analysis could be beneficial and helpful to select possible construction procedures.
토압식(Earth Pressure Balanced, EPB) 쉴드 TBM 굴착에서 첨가제 사용을 통해 막장 안정과 배토효율을 증대시키며, 토사지반에의 적용범위를 확대시킬 수 있다. 첨가제로 배합된 굴착토사는 배합 전과 그 거동을 달리하는데, 일반적으로 워커빌리티를 평가하여 비교할 수 있다. 본 연구에서는 국내 화강풍화토와 첨가제를 배합한 후 슬럼프 시험을 통해 워커빌리티를 평가하고, 적절한 배합비를 도출하고자 하였는바, 매 경우마다 슬럼프 시험을 실시하는 것이 많은 노력을 요하므로 실내 혹은 현장에서 슬럼프 시험보다 간편한 시험법이 필요하다고 판단되어 대체 실험으로서 낙하 콘 시험을 고안하였다. 같은 시료에 대하여 슬럼프 시험에 의한 슬럼프 치와 낙하 콘 시험에서의 콘 관입깊이와의 상관관계를 구한 결과 매우 상관성이 높음을 알 수 있었다. 따라서 국내에 편재해있는 화강풍화토에 대한 쏘일 컨디셔닝의 평가에 핵심인 슬럼프 치 대신 낙하 콘 시험을 이용할 수 있는 관계식을 제안하였다.
최근 기계식 터널 굴착기술의 발전과 수압을 받는 해저철도 터널의 특성 상 쉴드TBM 공법이 해저철도 터널 설계 및 시공에 널리 적용되고 있다. 해저철도 터널은 일반적인 지중응력상태에서 거동하지 않고 외부 수압이 상시재하되는 상태이며 지진 시 지진파의 증폭에 의한 영향을 받게 된다. 특히 연약지반, 연약토사-암반 복합지반, 단층파쇄대 등 다양한 지반조건 하에서 작용하는 지진하중은 터널 변위 및 지보재 응력의 급격한 변화를 초래하여 터널 안전성에 큰 영향을 미친다. 또한 지진하중의 주기특성, 지진파형, 최대가속도 등의 재하조건에 따라 지반 및 터널의 동적 응답이 달라지며 이는 지반조건과 결합하여 더욱 복잡한 지반-터널 구조물계의 거동을 보여주게 된다. 본 연구에서는 해저철도 터널의 동적거동 평가를 위하여 수압을 고려하여 지반-터널 구조물계 전체를 유한차분해석 기법으로 모델링 하고 상호 지진 시 구조물 응답을 분석하였다. 해저철도 터널의 지진 시 동적 거동에 영향을 미치는 주요 인자는 지반조건과 지진파이므로 가상 지반조건에 따라 총 6가지의 해석 Case를 설정하였다. 가상 지반조건은 해석 대상영역의 지반이 모두 토사(풍화토)인 경우(Case-1), 모두 암반(경암)인 경우(Case-2), 터널 진행방향(종방향)으로 토사와 암반의 복합지반인 경우(Case-3), 암반 내 폭이 상대적으로 좁은 파쇄대(w = 2.0 m)를 터널이 통과하는 경우(Case-4), 터널 진행방향(종방향)으로 연약토사와 암반의 복합지반인 경우(Case-5), 암반 내 폭이 상대적으로 넓은 파쇄대(w = 10.0 m)를 터널이 통과하는 경우(Case-6)으로 구분하여 각각 모델링을 수행하였다. 해석 결과 지진에 의한 수평변위는 지반물성 증가에 따라 커지는 경향을 나타내었으나 주변 지반의 구속효과와 강성 세그먼트로 결합된 쉴드터널 구조물의 특성으로 인하여 다소 억제되는 경향도 함께 관찰되었다. 세그먼트의 부재력은 변위 발생 경향과는 달리 지반 강성이 약할수록 현저히 증가하는 경향을 나타내었으며 오히려 변위 억제 효과에 따른 부재력 증가가 뚜렷하게 관찰되는 특성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.