• Title/Summary/Keyword: Tuning time

Search Result 846, Processing Time 0.03 seconds

Neuro-Fuzzy Control of Interior Permanent Magnet Synchronous Motors: Stability Analysis and Implementation

  • Dang, Dong Quang;Vu, Nga Thi-Thuy;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1439-1450
    • /
    • 2013
  • This paper investigates a robust neuro-fuzzy control (NFC) method which can accurately follow the speed reference of an interior permanent magnet synchronous motor (IPMSM) in the existence of nonlinearities and system uncertainties. A neuro-fuzzy control term is proposed to estimate these nonlinear and uncertain factors, therefore, this difficulty is completely solved. To make the global stability analysis simple and systematic, the time derivative of the quadratic Lyapunov function is selected as the cost function to be minimized. Moreover, the design procedure of the online self-tuning algorithm is comparatively simplified to reduce a computational burden of the NFC. Next, a rotor angular acceleration is obtained through the disturbance observer. The proposed observer-based NFC strategy can achieve better control performance (i.e., less steady-state error, less sensitivity) than the feedback linearization control method even when there exist some uncertainties in the electrical and mechanical parameters. Finally, the validity of the proposed neuro-fuzzy speed controller is confirmed through simulation and experimental studies on a prototype IPMSM drive system with a TMS320F28335 DSP.

Differential Evolution Approach for Performance Enhancement of Field-Oriented PMSMs

  • Yun, Hong Min;Kim, Yong;Choi, Han Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2301-2309
    • /
    • 2018
  • In a field-oriented vector-controlled permanent magnet synchronous motor (PMSM) control system, the d-axis current control loop can offer a free degree of freedom which can be used to improve control performances. However, in the industry the desired d-axis current command is usually set as zero without using the free degree of freedom. This paper proposes a method to use the degree of freedom for control performance improvement. It is assumed that both the inner loop proportional-integral (PI) current controller and the q-axis outer loop PI speed controller are tuned by the well-known tuning rules. This paper gives an optimal d-axis reference current command generator such that some useful performance indexes are minimized and/or a tradeoff between conflicting performance criteria is made. This paper uses a differential evolution algorithm to autotune the parameter values of the optimal d-axis reference current command generator. This paper implements the proposed control system in real time on a Texas Instruments TMS320F28335 floating-point DSP. This paper also gives experimental results showing the practicality and feasibility of the proposed control system, along with simulation results.

An Automatic Travel Control of a Container Crane using Neural Network Predictive PID Control Technique (신경회로망 예측 PID 제어법을 이용한 컨테이너 크레인의 자동주행제어)

  • Suh Jin Ho;Lee Jin Woo;Lee Young Jin;Lee Kwon Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.61-72
    • /
    • 2005
  • In this paper, we develop anti-sway control in proposed techniques for an ATC system. The developed algorithm is to build the optimal path of container motion and to calculate an anti-collision path for collision avoidance in its movement to the finial coordinate. Moreover, in order to show the effectiveness in this research, we compared NNP PID controller to be tuning parameters of controller using NN with 2 DOF PID controller. The experimental results for an ATC simulator show that the proposed control scheme guarantees performances, trolley position, sway angle, and settling time in NNP PID controller than other controller. As a result, the application of NNP PID controller is analyzed to have robustness about disturbance which is wind of fixed pattern in the yard. Accordingly, the proposed algorithm in this study can be readily used for industrial applications

Tuning Hydrophobicity of TiO2 Layers with Silanization and Self-assembled Nanopatterning

  • Nghia, Van Trong;Lee, Young Keun;Lee, Jaesang;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.291-291
    • /
    • 2013
  • The wettability of TiO2 layers is controlled by forming highly ordered arrays of nanocones using nanopatterning, based on self-assembly and dry etching. Nanopatterning of TiO2 layers is achieved via formation of self-assembled monolayers of SiO2 spheres fabricated using the Langmuir-Blodgett technique, followed by dry etching. Compared to a thin film TiO2 layer, the nanopatterned TiO2 samples show a smaller static water contact angle, where the water contact angle decreases as the etching time increases, which is attributed to the Wenzel equation. When TiO2 layers are coated by 1H,1H,2H,2H-perfluorooctyltrichlorosilane, we observed the opposite behavior, exhibiting superhydrophobicity (up to contact angle of $155^{\circ}$) on the nanopatterned TiO2 layers. Self-assembled nanopatterning of the TiO2 layer may provide an advanced method for producing multifunctional transparent layers with self-cleaning properties.

  • PDF

Application of robust fuzzy sliding-mode controller with fuzzy moving sliding surfaces for earthquake-excited structures

  • Alli, Hasan;Yakut, Oguz
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.517-544
    • /
    • 2007
  • This study shows a fuzzy tuning scheme to fuzzy sliding mode controller (FSMC) for seismic isolation of earthquake-excited structures. The sliding surface can rotate in the phase plane in such a direction that the seismic isolation can be improved. Since ideal sliding mode control requires very fast switch on the input, which can not be provided by real actuators, some modifications to the conventional sliding-mode controller have been proposed based on fuzzy logic. A superior control performance has been obtained with FSMC to deal with problems of uncertainty, imprecision and time delay. Furthermore, using the fuzzy moving sliding surface, the excellent system response is obtained if comparing with the conventional sliding mode controller (SMC), as well as reducing chattering effect. For simulation validation of the proposed seismic response control, 16-floor tall building has been considered. Simulations for six different seismic events, Elcentro (1940), Hyogoken (1995), Northridge (1994), Takochi-oki (1968), the east-west acceleration component of D$\ddot{u}$zce and Bolu records of 1999 D$\ddot{u}$zce-Bolu earthquake in Turkey, have been performed for assessing the effectiveness of the proposed control approach. Then, the simulations have been presented with figures and tables. As a result, the performance of the proposed controller has been quite remarkable, compared with that of conventional SMC.

Speed Control of Induction Motor Using Self-Learning Fuzzy Controller (자기학습형 퍼지제어기를 이용한 유도전동기의 속도제어)

  • 박영민;김덕헌;김연충;김재문;원충연
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.173-183
    • /
    • 1998
  • In this paper, an auto-tuning method for fuzzy controller's membership functions based on the neural network is presented. The neural network emulator offers the path which reforms the fuzzy controller's membership functions and fuzzy rule, and the reformed fuzzy controller uses for speed control of induction motor. Thus, in the case of motor parameter variation, the proposed method is superior to a conventional method in the respect of operation time and system performance. 32bit micro-processor DSP(TMS320C31) is used to achieve the high speed calculation of the space voltage vector PWM and to build the self-learning fuzzy control algorithm. Through computer simulation and experimental results, it is confirmed that the proposed method can provide more improved control performance than that PI controller and conventional fuzzy controller.

  • PDF

Hybrid Fuzzy Controller Using GAs Based on Control Parameters Estimation mode (제어파라미터 추정모드기반 GA를 이용한 HFC)

  • Lee, Dae-Keun;Oh, Sung-Kwun;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.700-702
    • /
    • 2000
  • The new design methodology of a hybrid fuzzy controller by means of the genetic algorithms is presented. In fuzzy controller which has been widely applied and used. in order to construct the best fuzzy rules that include adjustment of fuzzy sets, a highly skilled techniques using trial and error are required. To deal with such a problem, first, a hybrid fuzzy controller(HFC) related to the optimal estimation of control parameters is proposed. The HFC combined a PID controller with a fuzzy controller concurrently produces the better output performance than any other controller from each control output in steady state and transient state. Second, a auto-tuning algorithms is presented to automatically improve the performance of hybrid fuzzy controller, utilizing the simplified reasoning method and genetic algorithms. In addition, to obtain scaling factors and PID Parameters of HFC using GA, three kinds of estimation modes such as basic, contraction, and expansion mode are effectively utilized. The HFCs are applied to the first-order second-order process with time-delay and DC motor Computer simulations are conducted at step input and the performances of systems are evaluated and also discussed from performance indices.

  • PDF

An Effective Adaptive Autopilot for Ships

  • Le, Minh-Duc;Nguyen, Si-Hiep;Nguyen, Lan-Anh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.720-723
    • /
    • 2005
  • Ship motion is a complex controlled process with several hydrodynamic parameters that vary in wide ranges with respect to ship load condition, speed and surrounding conditions (such as wind, current, tide, etc.). Therefore, to effectively control ships in a designed track is always an important task for ship masters. This paper presents an effective adaptive autopilot ships that ensure the optimal accuracy, economy and stability characteristics. The PID control methodology is modified and parameters of a PID controller is designed to satisfy conditions for an optimal objective function that comprised by heading error, resistance and drift during changing course, and loss of surge velocity or fuel consumption. Designing of the controller for course changing process is based on the Model Reference Adaptive System (MRAS) control theory, while as designing of the automatic course keeping process is based on the Self Tuning Regulator (STR) control theory. Simulation (using MATLAB software) in various disturbance conditions shows that in comparison with conventional PID autopilots, the designed autopilot has several notable advantages: higher course turning speed, lower swing of ship bow even in strong waves and winds, high accuracy of course keeping, shorter time of rudder actions smaller times of changing rudder direction.

  • PDF

Multimodal Optimization Based on Global and Local Mutation Operators

  • Jo, Yong-Gun;Lee, Hong-Gi;Sim, Kwee-Bo;Kang, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1283-1286
    • /
    • 2005
  • Multimodal optimization is one of the most interesting topics in evolutionary computational discipline. Simple genetic algorithm, a basic and good-performance genetic algorithm, shows bad performance on multimodal problems, taking long generation time to obtain the optimum, converging on the local extrema in early generation. In this paper, we propose a new genetic algorithm with two new genetic mutational operators, i.e. global and local mutation operators, and no genetic crossover. The proposed algorithm is similar to Simple GA and the two genetic operators are as simple as the conventional mutation. They just mutate the genes from left or right end of a chromosome till the randomly selected gene is replaced. In fact, two operators are identical with each other except for the direction where they are applied. Their roles of shaking the population (global searching) and fine tuning (local searching) make the diversity of the individuals being maintained through the entire generation. The proposed algorithm is, therefore, robust and powerful.

  • PDF

A 1.5 Gbps Transceiver Chipset in 0.13-μm CMOS for Serial Digital Interface

  • Lee, Kyungmin;Kim, Seung-Hoon;Park, Sung Min
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.552-560
    • /
    • 2017
  • This paper presents a transceiver chipset realized in a $0.13-{\mu}m$ CMOS technology for serial digital interface of video data transmission, which compensates the electrical cable loss of 45 dB in maximum at 1.5 Gbps. For the purpose, the TX equips pre-emphasis in the main driver by utilizing a D-FF with clocks generated from a wide-range tuning PLL. In RX, two-stage continuous-time linear equalizers and a limiting amplifier are exploited as a front-end followed by a 1/8-rate CDR to retime the data with inherent 1:8 demultiplexing function. Measured results demonstrate data recovery from 270 Mbps to 1.5 Gbps. The TX consumes 104 mW from 1.2/3.3-V supplies and occupies the area of $1.485mm^2$, whereas the RX dissipate 133 mW from a 1.2-V supply and occupies the area of $1.44mm^2$.