• Title/Summary/Keyword: Tuning Method

Search Result 1,257, Processing Time 0.028 seconds

A New Optimal AVR Parameter Tuning Method Using On-Line Excitation Control System Model with SQP Method (온라인 여자제어시스템 모델과 SQP법을 이용한 AVR의 파라미터 튜닝 방법에 관한 연구)

  • Kim, Jung-Mun;Mun, Seung-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.3
    • /
    • pp.118-126
    • /
    • 2002
  • AVR parameter tuning for voltage control of generators has generally been done with the off-line open-circuit model of the synchronous generator. When the generator is connected on-line and operating with load the AVR operates in an entirely different environment from the open-circuit conditions. This paper describes a new method for AVR parameter tuning for on line conditions using SQP(Sequential Quadratic Programming) meshed with frequency response characteristics of linearized on-line system model. As the proposed method uses the un - line system model the tuned parameter sets show more optimal behavior in the on-line operating conditions. furthermore, as this method considers the performance indices that are needed for stable operation as constraints, AVR parameter sets that are tuned by this method could guarantee the stable performance, too.

A Study on the Parameters Tuning Method of the Fuzzy Power System Stabilizer Using Genetic Algorithm and Simulated Annealing (혼합형 유전 알고리즘을 이용한 퍼지 안정화 제어기의 계수동조 기법에 관한 연구)

  • Lee, Heung-Jae;Im, Chan-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.12
    • /
    • pp.589-594
    • /
    • 2000
  • The fuzzy controllers have been applied to the power system stabilizer due to its excellent properties on the nonlinear systems. But the design process of fuzzy controller requires empirical and heuristic knowledge of human experts as well as many trial-and-errors in general. This process is time consuming task. This paper presents an parameters tuning method of the fuzzy power system stabilizer using the genetic algorithm and simulated annealing(SA). The proposed method searches the local minimum point using the simulated annealing algorithm. The proposed method is applied to the one-machine infinite-bus of a power system. Through the comparative simulation with conventional stabilizer and fuzzy stabilizer tuned by genetic algorithm under various operating conditions and system parameters, the robustness of fuzzy stabilizer tuned by proposed method with respect to the nonlinear power system is verified.

  • PDF

Optimization of Fuzzy Set-Fuzzy Systems based on IG by Means of GAs with Successive Tuning Method

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.101-107
    • /
    • 2008
  • We introduce an optimization of fuzzy set-fuzzy systems based on IG (Information Granules). The proposed fuzzy model implements system structure and parameter identification by means of IG and GAs. The concept of information granulation was coped with to enhance the abilities of structural optimization of the fuzzy model. Granulation of information realized with C-Means clustering helps determine the initial parameters of the fuzzy model such as the initial apexes of the membership functions in the premise part and the initial values of polynomial functions in the consequence part of the fuzzy rules. The initial parameters are adjusted effectively with the help of the GAs and the standard least square method. To optimally identify the structure and the parameters of the fuzzy model we exploit GAs with successive tuning method to simultaneously search the structure and the parameters within one individual. We also consider the variant generation-based evolution to adjust the rate of identification of the structure and the parameters in successive tuning method. The proposed model is evaluated with the performance of the conventional fuzzy model.

Self-Tuning PID Controller Based on PLC

  • Phonphithak, A.;Pannil, P.;Suesut, T.;Masuchun, R.;Julsereewong, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.272-276
    • /
    • 2004
  • The conventional PID (Proportional-Integral-Derivative) control technique is widely used for the process control in many industries since it is simple in structure and provides the good response. Nowadays, this control technique has been developed on the Programmable Logic Controller (PLC) to use for the process control loop. However, using this technique is difficult when tuning the PID parameters ($K_p$, $T_i$ and $T_d$) to achieve the best response. Moreover, trial-and-error procedure along with the operator experiences are required to obtain the best results when tuning the PID controller parameters. This paper proposes the self-tuning PID controller based on PLC for the process control in the industries. The proposed self-tuning PID controller uses the PLC-based PID structures to control the process production. The proposed PID tuning utilizes the PLC to synthesize and analyze controller parameter as well as to tune for appropriate parameters using Dahlin method and extrapolation. Experimental results using a self-tuning PID controller to control temperature of the oven show that the controller developed is capable of controlling the process very effectively and provides a good response.

  • PDF

A Study on Tuning Effects of Intake Manifold, Intake Pipe and Air Filter upon Performance and Exhaust Emissions of Driving Car (운행자동차 성능 및 배기 배출물에 미치는 흡기 다기관, 흡기 파이프 및 공기필터의 튜닝효과에 관한 연구)

  • Bae, Myung-whan;Ku, Young Jin;Park, Hui-seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.538-548
    • /
    • 2016
  • The purpose of this study is to identify the possibility of effective tuning works, understand the characteristics of tuning engine, and analyse the basic data of engine tuning inspection corresponding to the safe operation and environment of a driving gasoline car. The effects of tuning on the characteristics of performance and exhaust emissions under a wide range of engine speeds are experimentally investigated by the actual driving car with a four-cycle, four-cylinder DOHC, turbo-intercooler, water-cooled gasoline engine operating at four types of non-tuning, tuning 1, 2 and 3. The tuning parts in the gasoline engine are the intake manifold, intake pipe and air filter. In the experiment, the output, torque and air-fuel ratio of the five-speed automatic transmission vehicles were measured at the chassis dynamometer(Dynojet 224xLC) with one person on board. The exhaust emissions of $NO_X$, THC, CO, $O_2$ and $CO_2$, and excess air ratio(${\lambda}$) at the other chassis dynamometer(DASAN-MD-ASM-97-KR-HD) were also measured by the idle/constant-speed mode(ASM2525 mode) test method. It is found that the actual air-fuel ratios of non-tuning and tuning engines were shown to be lower than the stoichiometric air-fuel ratio with increasing engine speed, and the actual air-fuel ratio of non-tuning engine was slightly higher than those of tuning engines when the engine speed is more than 4000 rpm. The output was significantly increased by the tuning whereby the maximum output of tuning engine was more increased to approximately 117.64% than that of non-tuning engine. In addition, CO, THC and $NO_X$ emissions of non-tuning and tuning engines measured by the constant-speed test mode were all satisfied with the inspection standards. CO emission was increased, while THC and $NO_X$ emissions were reduced by tuning.

Dialogical tuning of the sampling period in fuzzy control systems

  • Oura, Kunihiko;Ishimoto, Tsutomu;Akizuki, Kageo;Ishimaru, Naoyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.385-390
    • /
    • 1993
  • It is the purpose of this paper to present a dialogical tuning method of the sampling period in fuzzy control systems. Last year, the authors gave a dialogical tuning technique of fuzzy control system under the fixed sampling period in this symposium. In the case where sampling period is chosen larger, the response of the control system is unsatisfactory, and in the case where the sampling period is smaller, ineffective control actions are repeated. The appropriate sampling period is chosen through the step response of the closed loop fuzzy control process. As the tuning technique depends on the controlled plant, it is necessary to estimate the rough characteristics of it. The authors propose a method to decide th appropriate sampling period, by inspecting the characteristics of the plant.

  • PDF

Analysis and Auto-tuning of Scale Factors of Fuzzy Logic Controller

  • Lee, Chul-Heui;Seo, Seon Hak
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.51-56
    • /
    • 1998
  • In this paper, we analyze the effects of scaling factors on the performance of a fuzzy logic controller(FLC). The quantitative relation between input and output variables of FLC is obtained by using a qualsi-linear fuzzy model, and an approximate transfer function of FLC is dervied from the comparison of it with the conventional PID controller. Then we analyze in detail the effects of scaling factor using this approximate transfer function and root locus method. Also we suggest an on-line tuning method for scaling factors which employs an sample performance function and a variable reference for tuning index.

  • PDF

Controller Auto-tuning Scheme for Improving Feedback System Performance in Frequency Domain (주파수역에서의 피드백시스템의 성능향상을 위한 제어기 Atuo-tuning 기법)

  • 정유철;이건복
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.26-30
    • /
    • 2001
  • Controller refinement scheme to improve the performance of a conventional system automatically in frequency domain is proposed. The controller automatic tuning method features using experimental frequency responses of the conventional closed-loop system, the conventional controller, and the improved closed-loop system, instead of poorly modeled plant due to non-linearities and disturbances. The improved closed-loop system characteristics is automatically acquired by the con-ventional closed-loop system characteristics and the proposed performance index in system bandwidth. And the proper controller is realized by least squares approximation in frequency domain. To testify the usefulness of the approach, the path tracking control of robot arm is performed. Experimental results and analytic results are well-matched.

  • PDF

Auto-tuning of PID/PIDA Controllers based on Step-response (스텝응답에 기반한 PID/PIDA 제어기의 자동동조)

  • Ahn, Kyung-Pil;Lee, Jun-Sung;Lim, Jae-Sik;Lee, Young-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.974-981
    • /
    • 2009
  • In this paper, a method of auto-tuning of PID (Proportional-Integral-Derivative) and PIDA (Proportional-Integral-Derivative-Acceleration) controllers is proposed that can be applied to a time-delayed second order model. The proposed identification method is based on step responses, but it can be easily automated rising digital controller unlike the existing graphical identification methods. We provide a ways to yield parameter identifications which is independent to initial values of the plants. The tuning rule is based on the pole-placement strategy and is formulated so that it can be implemented using a digital controller with ease.