• Title/Summary/Keyword: Tungsten composition

Search Result 99, Processing Time 0.025 seconds

Size, Shape, and Crystal Structure-dependent Toxicity of Major Metal Oxide Particles Generated as Byproducts in Semiconductor Fabrication Facility (반도체 가공 작업환경에서 부산물로 발생되는 주요 금속산화물의 입자 크기, 형상, 결정구조에 따른 독성 고찰)

  • Choi, Kwang-Min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.119-138
    • /
    • 2016
  • Objectives: The purpose of this study is to review size, shape, and crystal structure-dependent toxicity of major metal oxide particles such as silicon dioxide, tungsten trioxide, aluminum oxide, and titanium dioxide as byproducts generated in semiconductor fabrication facility. Methods: To review the toxicity of major metal oxide particles, we used various reported research and review papers. The papers were searched by using websites such as Google Scholar and PubMed. Keyword search terms included '$SiO_2$(or $WO_3$ or $Al_2O_3$ or $TiO_2$) toxicity', 'health effects $SiO_2$(or $WO_3$ or $Al_2O_3$ or $TiO_2$). Additional papers were identified in references cited in the searched papers. Results: In various cell lines and organs of human and animals, cytotoxicity, genotoxicity, hepatoxicity, fetotoxicity, neurotoxicity, and histopathological changes were induced by silicon dioxide, tungsten trioxide, aluminium oxide, and titanium dioxide particles. Differences in toxicity were dependent on the cell lines, organs, doses, as well as the chemical composition, size, surface area, shape, and crystal structure of the particles. However, the doses used in the reported papers were higher than the possible exposure level in general work environment. Oxidative stress induced by the metal oxide particles plays a significant role in the expression of toxicity. Conclusions: The results cannot guarantee human toxicity of the metal oxide particles, because there is still a lack of available information about health effects on humans. In addition, toxicological studies under the exposure conditions in the actual work environment are needed.

Polishing Characteristics of passivation layer by abrasive particles and slurry chemical in the Metal CMP process (금속 CMP 공정에서 연마제와 슬러리 케미컬에 의한 passivation layer의 연마특성)

  • Park, Chang-Jun;Seo, Yong-Jin;Lee, Kyoung-Jin;Jeong, So-Young;Kim, Sang-Yong;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.45-48
    • /
    • 2003
  • The polishing mechanism of W-CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. Thus, it is important to understand the effect of oxidizer on tungsten passivation layer in order to obtain higher removal rate (RR) and very low non-uniformity (NU%) during W-CMP process. In this paper, we investigated the effects of oxidizer on W-CMP process with three different kinds of oxidizers, such as $H_2O_2$, $Fe(NO_3)_3$, and $KIO_3$. In order to compare the removal rate and non-uniformity of three oxidizers, we used alumina-based slurry of pH 4. According to the CMP tests, three oxidizers showed different removal mechanism on tungsten surface. Also, the microstructures of surface layer by AFM image were greatly influenced by the slurry chemical, composition of oxidizers. The difference in removal rate and roughness of tungsten surface are believed to caused by modification in the mechanical behavior of $Al_2O_3$ abrasive particles in CMP slurry. Our stabilized slurries can be used a guideline and promising method for improved W-CMP process.

  • PDF

Characteristics of Rhenium-Iridium coating thin film on tungsten carbide by multi-target sputter

  • Cheon, Min-Woo;Kim, Tae-Gon;Park, Yong-Pil
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.328-331
    • /
    • 2012
  • With the recent development of super-precision optical instruments, camera modules for devices, such as portable terminals and digital camera lenses, are increasingly being used. Since an optical lens is usually produced by high-temperature compression molding methods using tungsten carbide (WC) alloy molding cores, it is necessary to develop and study technology for super-precision processing of molding cores and coatings for the core surface. In this study, Rhenium-Iridium (Re-Ir) thin films were deposited onto a WC molding core using a sputtering system. The Re-Ir thin films were prepared by a multi-target sputtering technique, using iridium, rhenium, and chromium as the sources. Argon and nitrogen were introduced through an inlet into the chamber to be the plasma and reactive gases. The Re-Ir thin films were prepared with targets having a composition ratio of 30 : 70, and the Re-Ir thin films were formed with a 240 nm thickness. Re-Ir thin films on WC molding core were analyzed by scanning electron microscope (SEM), atomic force microscope (AFM), and Ra (the arithmetical average surface roughness). Also, adhesion strength and coefficient friction of Re-Ir thin films were examined. The Re-Ir coating technique has received intensive attention in the coating processes field because of promising features, such as hardness, high elasticity, abrasion resistance and mechanical stability that result from the process. Re-Ir coating technique has also been applied widely in industrial and biomedical applications. In this study, WC molding core was manufactured, using high-performance precision machining and the effects of the Re-Ir coating on the surface roughness.

Experimental Study of Reactive Ion Etching of Tungsten Films Using $SF_6$ Plasma ($SF_6$플라즈마를 이용한 텅스텐 박막의 반응성이온식각에 관한 실험적 연구)

  • 박상규;서성우;이시우
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.7
    • /
    • pp.60-74
    • /
    • 1993
  • Experiments of RIE of tungsten films using SF$_{6}$ plasma were conducted to investigate the effect of process parameters on etch rate, uniformity, anisotropy, and selectivity. As power increased, the etch rate increased. Maximum etch rate was obtained at 200mtorr As interelectrode spacing increased the etch rate increased for P < 200mtorr while it decreased for P> 200mtorr. Etch rate was maximum at 20 sccm gas flow rate. As substrate temperature increased, the etch rate increased and activation energy was 0.046 eV. In addition, maximum etch rate was acquired at 20% $O_{2}$ addition. The etch rate slightly increased when Ar was added up to 20% while it continuously decreased when N$_{2}$ was added. Uniformity got improved as pressure decreased and was less than 4% for P <100mtorr. Mass spectrometer was utilized to analyze gas composition and S and F peaks were observed from XPS analysis with increasing power. The anisotropy was better for smaller power and spacing, and lower pressure and temperature. It improved when CH$_{4}$ was added and anisotropic etch profile was obtained when about 10% $O_{2}$ was added. The selectjvity was better for smaller power larger pressure and spacing, and lower temperature. Especially. low temperature processing was proposed as a novel method to improve the anisotropy and selectivity.

  • PDF

Fabrication and Crystallization Behavior of BNN Thin Films by H-MOD Process

  • Lou, Jun-Hui;Lee, Dong-Gun;Lee, Hee-Young;Lee, Joon-Hyung;Cho, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.739-743
    • /
    • 2003
  • [ $Ba_2NaNb_5O_{15}$ ], hereafter BNN, thin films are attractive candidates for nonvolatile memory and electro-optic devices. In the present work, thin films that have different contents of Ba, Nb and Na have been prepared by H-MOD technique on silicon and Pt substrates. XRD and SEM were used to investigate the phase evolution behavior and the microstructure of the films. It was found that the films of about 500nm thick were crack-free and uniform in microstructure. Nb content strongly influenced the phase formation of the films, where unwanted phases were always formed at the stoichiometric BNN composition. However, the unwanted phases decreased with the increase of excess Nb content, and the single phase (tetragonal tungsten bronze structure) BNN thin film was obtained when the niobium content reached some point. From this study, the sub-solidus phase diagram below $850^{\circ}C$ for $BaO-Na_2O-Nb_2O_5$ ternary system is proposed.

  • PDF

Fabrication and Crystallization Behavior of BNN Thin Films by H-MOD Process

  • Lou, Junhui;Lee, Dong-Gun;Lee, Hee-Young;Lee, Joon-Hyung;Cho, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.98-102
    • /
    • 2003
  • $Ba_2NaNb_5O_{15}$, hereafter BNN, thin films are attractive candidates for nonvolatile memory and electro-optic devices. In the present work, thin films that have different contents of Ba, Na and Nb have been prepared by H-MOD technique on silicon and Pt substrates. XRD and SEM were used to investigate the phase evolution behavior and the microstructure of the films. It was found that the films of about 450nm thick were crack-free and uniform in microstructure. Nb content strongly influenced the phase formation of the films, where low temperature phase was always formed at the stoichiometric BNN composition. However, the amount of low temperature phase decreased with the increase of excess Nb content, and the single phase (orthorhombic tungsten bronze structure) BNN thin film was obtained at the temperature as low as $750^{\circ}C$ for samples with excess niobium. From this study, the sub-solidus phase diagram below $850^{\circ}C$ for $BaO-Na_2O-Nb_2O_5$ ternary system is proposed.

  • PDF

The Observations of Water, Carbon Dioxide, Hydrgen, Nitrogen, Oxygen, Carbon Monoxide and Methane as Impurities in Natural Garnets (석류석의 불순물인 물, 이산화탄소, 수소, 질소, 산소, 일산화탄소 및 메탄의 고찰)

  • R. Everett Langford;A. A. Giardini;Charles E. Melton
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.353-356
    • /
    • 1973
  • A unique method of destructive analysis has been developed for the study of gaseous impurities in minerals. Samples are crushed in a high vacuum sample system of a research mass spectrometer. This is done by means of a suitably designed crusher which is incorporated in the inlet system of the instrument. Crusher elements are constructed of tungsten carbide. The mass spectrometer used for this preliminary study has a detection sensitivity of about $10^{-10}cc$at STP. In a study of rhodolite garnets obtained from near Lavonia, Georgia, U.S.A., the gases$H_2$, $O_2$, $H_{2}O$, $CO_2$, CO, and $CH_4$have been identified and their composition determined.

  • PDF

Wall-rock Alteration Relating to Tungsten-Tin-Copper Mineralization at the Ohtani Mine, Japan (대곡(大谷) W-Sn-Cu 광상(鑛床)의 열수변질작용(熱水變質作用))

  • Kim, Moon Young
    • Economic and Environmental Geology
    • /
    • v.21 no.3
    • /
    • pp.209-221
    • /
    • 1988
  • The ore deposit of the Ohtani mine is one of repesentatives of plutonic tungsten-tin veins related genetically to acidic magmatism of Late Cretaceous in the Inner zone of Southwest Japan. Based on macrostructures of vein filling on the order of ore body, three major mineralization stages, called stage I, stage II, and stage ill from earliest to latest, are distinguished by major tectonic breaks. The alteration zories are characterized by specific mineral associations in pseudomorphs after biotite. The alteration zones can be divided into two parts, i. e. a chlorite zone and a muscovite zone, each repesenting mineralogical and chemical changes produced by the hydrothermal alteration. The chloritic alteration took place at the beginning of mineralization, and muscovite alteration in additions to chloritic alteration took place at stage II and ill. The alteration zones are considered to be formed by either of two alteration mechanism. 1) The zones are formed by reaction of the rock with successive flows of solution of different composition and different stage. 2) The zones are formed contemporaneously as the solution move outward. Reaction between the solution and the wall-rock results in a continuous change in solution chemistry. The migration of the successive replacement of the fresh zone$\rightarrow$the chlorite zone$\rightarrow$the muscovite zone may have transgressed slowly veinward, leaving metasomatic borders between the different zones.

  • PDF

Synthesis of Tungsten Doped Vanadium Dioxide and Its Thermochromic Property Studies (텅스텐이 도핑된 바나듐 산화물의 합성 및 열전이 특성 연구)

  • Hwang, Kyung-Jun;Jo, Cho Won;Yoo, Jung Whan
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.44-48
    • /
    • 2013
  • In this work, we have prepared tungsten doped vanadium oxide ($W-VO_2$) particles with a low phase transition temperature. $W-VO_2$ particles were synthesized via thermolysis method using vanadyl (IV) sulfate and ammonium bicarbonate as precursors. The structure and thermochromic property of synthesized $W-VO_2$ particles were investigated by FE-SEM, EDS, XRD, XPS, and DSC analysis. The prepared $W-VO_2$ showed a nearly platy morphology, which indicates that the tungsten was successfully doped in the crystal lattices of $VO_2$. $W-VO_2$ nanoparticles with the size of 60 nm exhibited a monoclinic crystal structure and its chemical composition and surface state were also likely to be close to that of $VO_2$. In addition, the phase transition temperature of $W-VO_2$ was $38.5^{\circ}C$, which was approximately $29.2^{\circ}C$ lower than that of pure $VO_2$ ($67.7^{\circ}C$), indicating that the prepared sample had a good reversible thermochromic stability.

Effects of RF Power, Substrate Temperature and Gas Flow Ratio on the Mechanical Properties of WCx Films Deposited by Reactive Sputtering (반응성 스퍼터링법에서의 RF전력, 기판온도 및 가스유량비가 WCx막의 기계적 특성에 끼치는 효과)

  • Park Y. K.;Lee C. M.
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.621-625
    • /
    • 2005
  • Effects of rf power, pressure, sputtering gas composition, and substrate temperature on the deposition rate of the $WC_x$ coatings were investigated. The effects of rf power and sputtering gas composition on the hardness and corrosion resistance of the $WC_x$ coatings deposited by reactive sputtering were also investigated. X-ray diffraction (XRD) and Auger electron spectroscopy (AES) analyses were performed to determine the structures and compositions of the films, respectively. The hardnesses of the films were investigated using a nanoindenter, scanning electron microscopy, ana a salt-spray test, respectively. The deposition rate of the films was proportional to rf power and inversely proportional to the $CH_4$ content of $Ar/CH_4$ sputtering gas. The deposition rate linearly increased with increasing chamber pressure. The hardness of the $WC_x$ coatings Increased as rf power increased. The highest hardness was obtained at a $Ar/CH_4$ concentration of $10 vol.\%$ in the sputtering gas. The hardness of the $WC_x$ film deposited under optimal conditions was found to be much higher than that of the electroplated chromium film, although the corrosion resistance of the former was slightly lower than that of the latter.