• Title/Summary/Keyword: Tungsten bronze

Search Result 35, Processing Time 0.045 seconds

Characterization of Hexagonal Tungsten Bronze CsxWO3 Nanoparticles and Their Thin Films Prepared by Chemical Coprecipitation and Wet-Coating Methods

  • Kwak, Jun Young;Hwang, Tai Kyung;Jung, Young Hee;Park, Juyun;Kang, Yong-Cheol;Kim, Yeong Il
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.2
    • /
    • pp.118-123
    • /
    • 2018
  • The hexagonal tungsten bronze $Cs_xWO_3$ nanoparticle was synthesized by a chemical coprecipitation method of ammonium tungstate and $Cs_2CO_3$ in acidic condition. This synthetic method for cesium tungsten bronze is reported for the first time as far as we know. The synthesized $Cs_xWO_3$ as precipitated showed a weak crystallinity of hexagonal unit cell with a crystallite size of about 4 nm without annealing. When the synthesized $Cs_xWO_3$ was annealed in $N_2$ atmosphere, the crystallinity and crystallite size systematically increased maintaining the typical hexagonal tungsten bronze structure as the annealing temperature increased. The analyzed Cs content in the bronze was about 0.3 vs W, which is very close to the theoretical maximum value, 1/3 in cesium tungsten bronze. According to XPS analysis, the reduced tungsten ions existed as both the forms of $W^{5+}$ and $W^{4+}$ and the contents systematically increased as the annealing temperature increased up to $800^{\circ}C$. The $Cs_xWO_3$ thin films on PET substrate were also prepared by a wet-coating method using the ball-milled solution of the annealed $Cs_xWO_3$ nanoparticles at various temperatures. The near-infrared shielding property of these thin films increased systematically as the annealing temperature increased up to $800^{\circ}C$ as expected with the increased contents of reduced tungsten ions.

The study on preparation of $Sr_xBa_{1-x}$ $Nb_2O_6$ piezoelectric Thin Film of tungsten-bronze type by Metal Organic Decomposition Process and their properties (MOD 공법을 이용한 텅스텐 브론즈구조의 $Sr_x Ba_{1-x}$ $Nb_2O_6$ 압전 박막의 제조 및 특성 연구)

  • Kim, Kwang-Sik;Kim, Kyoung-Won;Jang, Gun-Ik;Ur, Soon-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.248-249
    • /
    • 2005
  • The tungsten bronze type of strontium barium niobate(SBN) thin film was synthesized by metal organic decomposion method for SBN stock solution and the SBN thin film process were deposited by spin-coating process on Pt-deposited si-wafer(100) by magnetron sputtering system. The thickness of SBN thin film was 150$\sim$200 nm and were optimized for rpm of spin-coater system. The structural variation of SBN thin film was studied by TG-DTA and XRD. The deposited SBN stock solution on annealing at $400\sim800^{\circ}C$ a pure tungsten bronze SBN phase and the corresponding average grain size about 500$\sim$1000 nm influenced by annealing temperature.

  • PDF

Near Infrared Shielding Properties of Quaternary Tungsten Bronze Nanoparticle Na0.11Cs0.22WO3

  • Moon, Kyunghwan;Cho, Jin-Ju;Lee, Ye-Bin;Yoo, Pil J.;Bark, Chung Wung;Park, Juhyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.731-734
    • /
    • 2013
  • Reduced tungsten bronze nanoparticles of ternary and quaternary compounds were prepared by adding sodium and cesium to crystal structures of tungsten trioxides ($Na_xCs_{0.33-x}WO_3$, x = 0, 0.11) while maintaining the overall alkali metal fraction at 0.33, in an attempt to control near infrared (NIR) shielding property in the particular wavelength range of 780 to 1200 nm. The structure and composition analysis of the quaternary compound, $Na_{0.11}Cs_{0.22}WO_3$, revealed that 93.1% of the hexagonal phase was formed, suggesting that both alkali metals were mainly inserted in hexagonal channel. The NIR shielding property for $Na_{0.11}Cs_{0.22}WO_3$ was remarkable, as this material demonstrated efficient transmittance of visible light up to 780 nm and enhancement in NIR shielding because of the blue-shifted absorption maximum in comparison to $Cs_{0.33}WO_3$.

Growth Properties of Tungsten-Bronze Sr1-xBaxNb2O6 Single Crystals (텅스텐 브론즈 Sr1-xBaxNb2O6 단결정의 성장 특성)

  • Joo, Gi-Tae;Kang, Bonghoon
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.711-716
    • /
    • 2012
  • Tungsten bronze structure $Sr_{1-x}Ba_xNb_2O_6$ (SBN) single crystals were grown primarily using the Czochralski method, in which several difficulties were encountered: striation formation and diameter control. Striation formation occurred mainly because of crystal rotation in an asymmetric thermal field and unsteady melt convection driven by thermal buoyancy forces. To optimize the growth conditions, bulk SBN crystals were grown in a furnace with resistance heating elements. The zone of $O_2$ atmosphere for crystal growth is 9.0 cm and the difference of temperature between the melt and the top is $70^{\circ}C$. According to the growth conditions of the rotation rate, grown SBN became either polycrystalline or composed of single crystals. In the case of as-grown $Sr_{1-x}Ba_xNb_2O_6$ (x = 0.4; 60SBN) single crystals, the color of the crystals was transparent yellowish and the growth axis was the c-axis. The facets of the crystals were of various shapes. The length and diameter of the single crystals was 50~70 mm and 5~10 mm, respectively. Tungsten bronze SBN growth is affected by the temperature profile and the atmosphere of the growing zone. The thermal expansion coefficients on heating and on cooling of the grown SBN single crystals were not matched. These coefficients were thought to influence the phase transition phenomena of SBN.

Sr/Ba Ratio Dependence of Dielectric Characteristics in Strontium Barium NiobateCeramics (Sr/Ba 비에 따른 Strontium Barium Niobate 세라믹스의 유전특성)

  • 김명섭;이준형;김정주;이희영;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1167-1173
    • /
    • 2001
  • The tetragonal tungsten bronze type of Sr$_{x}Ba_{1-x}Nb_{2}O_{6}$(SBN) (0.3$\le$x$\ge$0.7) ceramics was synthesized by the solid state reaction method, and the dielectric properties of SBN ceramics as a function of Sr/Ba ratio were examined. With increasing Sr/Ba ratio in SBN ceramics, the Curie temperature decreased and the maximum dielectric constant at the Curie temperature increased. The relaxor behavior of the SBN ceramics as a function of Sr/Ba ratio was quantitatively evaluated. More relaxor behavior of dielectric characteristics was observed as the ratio of Sr/Ba increased. The experimental results are explained with a viewpoint of crystallography of tungsten bronze structured SBN ceramics.

  • PDF

The dependent of growth temperature of piezoelectric SBN Thin Film by Metal Organic Decomposition Process and their properties (MOD 법에 의한 압전 SBN 박막의 성장 온도 의존성 및 특성)

  • Kim, Kwang-Sik;Jang, Gun-Ik;Ur, Soon-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.382-383
    • /
    • 2006
  • The tungsten bronze type of strontium barium niobate(SBN) thin film was synthesized by metal organic decomposion method for SBN stock solution and the SBN thin film process were deposited by spin-coating process on Pt-deposited si-wafer(100) by magnetron sputtering system. The thickness of SBN thin film was 150~200 nm and were optimized for rpm of spin-coater system. The structural variation of SBN thin film was studied by TG-DTA and XRD. The deposited SBN stock solution on annealing at $400{\sim}800^{\circ}C$ a pure tungsten bronze SBN phase and the corresponding. average grain size about 500~1000 nm influenced by annealing temperature. The piezoelectric properties of prepared SBN thin film, the remanent polarization value(2Pr) and coercive field was $1.2{\mu}C/cm^2$ and 2.15V/cm, respectively.

  • PDF

Formation Condition and Ferroelectric Properties of Niobate Tetragonal Tungsten Bronze (TTB) Type Ferroelectrics

  • Naoki Wakiya;Wang, Ju-Kai;Kazuo Shinozaki;Nobuyasu Mizutani
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.380-384
    • /
    • 2000
  • Crystal structure of $Ba_5-5X$Y$_10/3$Nb$_10$O$_30$ was tried to determine by Rietveld analysis using powder X-ray diffraction data. This compound has tetragonal tungsten bronze (TTB) structure with general formula, (Al)$_2$(A2)$_4$(B1)$_2$(B2)$_8$(O1)$_8$(O2)$_8$(O3)$_4$(O4)$_2$(O5)$_4$(O6)$_4$. However, it was difficult to determine the distribution of Ba and Y in Al and A2 sites by the analysis only. Combination of Rietveld analysis and site potentials calculation as well as lattice energy calculations helped to determine the distribution. As the result, it was clarified that $Ba^2+$ cations occupy A2 (pentagonal tunnel site) and $Y^3+$ cations occupy Al (cubic site). The distribution of cations at each site coincides with the distribution estimated by the difference of ionic radii. This supports the formation condition of TTB which was proposed in our previous report. $Ba_5-5X$Y$_10X/3$Nb$_10$O$_30$ shows ferroelectric characteristics. In this compound, remanent polarization decreases slightly with the composition X. On the other hand, the result of crystal structure determination reveals that atomic positions along c-axis for A1, A2, B1 and B2 cations are also decreased with the composition X. This would suggest that the dependence of remanent polarization on composition X is derived by the dependence of atomic coordinates on composition X.

  • PDF

Fabrication and Characterization of Hexagonal Tungsten Oxide Nanopowders for High Performance Gas Sensing Application (육방정계 텅스텐옥사이드 나노분말의 합성과 고성능 가스센서응용을 위한 성능 평가)

  • Park, Jinsoo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.28-33
    • /
    • 2019
  • The gas sensor is essential to monitoring dangerous gases in our environment. Metal oxide (MO) gas sensors are primarily utilized for flammable, toxic and organic gases and $O_3$ because of their high sensitivity, high response and high stability. Tungsten oxides ($WO_3$) have versatile applications, particularly for gas sensor applications because of the wide bandgap and stability of $WO_3$. Nanosize $WO_3$ are synthesized using the hydrothermal method. As-prepared $WO_3$ nanopowders are in the form of nanorods and nanorulers. The crystal structure is hexagonal tungsten bronze ($MxWO_3$, x =< 0.33), characterized as a tunnel structure that accommodates alkali ions and the phase stabilizer. A gas detection test reveals that $WO_3$ can detect acetone, butanol, ethanol, and gasoline. This is the first study to report this capability of $WO_3$.