Browse > Article
http://dx.doi.org/10.5012/jkcs.2018.62.2.118

Characterization of Hexagonal Tungsten Bronze CsxWO3 Nanoparticles and Their Thin Films Prepared by Chemical Coprecipitation and Wet-Coating Methods  

Kwak, Jun Young (Research Laboratory, Adchro, Inc.)
Hwang, Tai Kyung (Department of Chemistry, Pukyong National University)
Jung, Young Hee (Research Laboratory, Adchro, Inc.)
Park, Juyun (Department of Chemistry, Pukyong National University)
Kang, Yong-Cheol (Department of Chemistry, Pukyong National University)
Kim, Yeong Il (Department of Chemistry, Pukyong National University)
Publication Information
Abstract
The hexagonal tungsten bronze $Cs_xWO_3$ nanoparticle was synthesized by a chemical coprecipitation method of ammonium tungstate and $Cs_2CO_3$ in acidic condition. This synthetic method for cesium tungsten bronze is reported for the first time as far as we know. The synthesized $Cs_xWO_3$ as precipitated showed a weak crystallinity of hexagonal unit cell with a crystallite size of about 4 nm without annealing. When the synthesized $Cs_xWO_3$ was annealed in $N_2$ atmosphere, the crystallinity and crystallite size systematically increased maintaining the typical hexagonal tungsten bronze structure as the annealing temperature increased. The analyzed Cs content in the bronze was about 0.3 vs W, which is very close to the theoretical maximum value, 1/3 in cesium tungsten bronze. According to XPS analysis, the reduced tungsten ions existed as both the forms of $W^{5+}$ and $W^{4+}$ and the contents systematically increased as the annealing temperature increased up to $800^{\circ}C$. The $Cs_xWO_3$ thin films on PET substrate were also prepared by a wet-coating method using the ball-milled solution of the annealed $Cs_xWO_3$ nanoparticles at various temperatures. The near-infrared shielding property of these thin films increased systematically as the annealing temperature increased up to $800^{\circ}C$ as expected with the increased contents of reduced tungsten ions.
Keywords
Hexagonal tungsten bronze; $Cs_xWO_{3}$; Coprecipitation; Near infrared shielding;
Citations & Related Records
연도 인용수 순위
  • Reference
1 (a) Granqvist, C. G. Electrochim. Acta 1999, 44, 3005.   DOI
2 (b) Granqvist, C. G. Sol. Energy Mater. Sol. Cells 2000, 60, 201.   DOI
3 Sun, M.; Xu, N.; Cao. Y. W.; Yao, J. M.; Wang, E. G. J. Mater. Res. 2000, 15, 927.   DOI
4 Schweiger, C.; Georg, A.; Graf, W.; Wittwer, V. Sol. Energy Mater. Sol. Cells 1998, 54, 99   DOI
5 Faughnan, B. H.; Crandall, R. S.; Heyman, P. M. RCA Rev. 1975, 36, 177.
6 Deneuville, A.; Gerard, P. J. Electron. Mater. 1978, 7, 559.   DOI
7 (a) Takeda, H.; Adachi, K. J. Am. Ceram. Soc. 2007, 12, 4059.
8 (b) Yang, C.; Chen, J.-F.; Zeng, X.; Cheng, D.; Cao, D. Ind. Eng. Chem. Res. 2014.
9 Machida, K.; Tofuku, A.; Adachi, K. Handbook of Functional Nanomaterials; Aliofkhazraei, M., Ed.; Nova Science Publishers: 2013; Vol. 1, pp 199-220.
10 (a) Zeng, X.; Zhou, Y.; Ji, S.; Luo, H.; Yao, H.; Huang, X.; Jin, P. J. Mater. Chem. C 2015, 3, 8050.   DOI
11 (b) Lee, J.-S.; Liu, H.-C.; Peng, G.-D.; Tseng, Y. J. Cryst. Growth 2017, 465, 27.   DOI
12 (a) Liu, J. X.; Ando, Y.; Dong, X. L.; Shi, F.; Yin, S.; Adachi, K. J. Solid State Chem. 2010, 183, 2456.   DOI
13 (b) Gao, C.; Yin, S.; Zhang, P.; Yan, M.; Adachi, K.; Chonan, T. Sato, T. J. Mater. Chem. 2010, 20, 8227.   DOI
14 (c) Gao, C.; Yin, S.; Huang, L.; Yang, L.; Sato, T. Chem. Comm. 2011, 47, 8853.   DOI
15 (g) Shi, F.; Liu, J.; Dong, X.; Xu, Q.; Luo, J.; Ma, H. J. Mater. Sci. Technol. 2014, 30, 342.   DOI
16 (d) Liu, J.-X.; Shi, F.; Dong, X.-L.; Yin, S.; Sato, T. Mater. Character. 2013, 84, 182.   DOI
17 (e) Liu, J.; Xu, Q.; Shi, F.; Liu, S.; Luo, J.; Bao, L.; Feng, X. App. Surf. Sci. 2014, 309, 175.   DOI
18 (f) Xu, Q.; Liu, J.; Shi, F.; Luo, J.; Jiang, Y.; Liu, G. Adv. Mater. Res. 2013, 712-715, 284.   DOI
19 Supothina, S.; Seeharaj, P.; Yoriya, S.; Sriyudthsak, M. Ceram. Int. 2007, 33, 931.   DOI
20 Lee, K.-S.; Seo, D.-K.; Whangbo, M.-H. J. Am. Chem. Soc. 1997, 119, 4043.   DOI
21 JCPDS 83-1334.