• Title/Summary/Keyword: Tungsten Powder

Search Result 223, Processing Time 0.027 seconds

Synthesis and Characterization of Tungsten Trioxide Films Prepared by a Sol-Gel Method for Electrochromic Applications

  • Kim, Tae-Ho;Nah, Yoon-Chae
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.309-314
    • /
    • 2015
  • Tungsten trioxide thin films are successfully synthesized by a sol-gel method using tungsten hexachloride as precursors. The structural, chemical, and optical properties of the prepared films are characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and UV-Vis spectrophotometry. The electrochemical and electrochromic properties of the films before and after heat treatment are also investigated by cyclic voltammetry, chronoamperometry, and in situ transmittance measurement system. Compared to as-prepared films, heat-treated tungsten trioxide thin films exhibit a higher electrochemical reversibility of 0.81 and superior coloration efficiency of $65.7cm^2/C$, which implies that heat treatment at an appropriate temperature is a crucial process in a sol-gel method for having a better electrochromic performance.

The Characteristics and Formation of Tungsten Nano-Powder by Ultrasonic Spray Pyrolysis Method (초음파분무열분해법에 의한 나노 텅스텐 분말의 형성 및 특성에 관하여)

  • Lee, Ho-Jin;Yoon, Jung-Hyun;Choe, Jean-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.4
    • /
    • pp.174-179
    • /
    • 2008
  • Nanosize tungsten powder was synthesized by ultrasonic spray pyrolysis method through a solution containing ammonium metatungstate hydrate $[(NH_4)_6W_{12}O_{39}{\cdot}H_2O]$ and reduction treatment. It was expected the improvement of mechanical properties due to increasing surface free energy and surface activity. Starting solutions with each concentration, reaction temperature and reduction treatment were significantly influenced on the formation of tungsten size and phase. It was found that particle size was decreased with concentration of starting solution and surface tension were decreased. The particle size was increased at thermal decomposition temperature above $600^{\circ}C$ by neck growth of interparticles. Tungsten particles were formed by reduction reaction in atmosphere of hydrogen gas at the temperature above $700^{\circ}C$.

A study on the mechanically equivalent surrogate plate of U-Mo dispersion fuel using tungsten

  • Kim, Hyun-Jung;Yim, Jeong-Sik;Jeong, Yong-Jin;Lee, Kang-Hee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.495-500
    • /
    • 2019
  • When a new fuel is developed, various mechanical properties are absolutely necessary for a safety analysis of the fuel for the licensing and prediction of its mechanical behavior during operation and accident conditions. In this paper, a mechanically equivalent surrogate plate of U-Mo dispersion fuel is presented using tungsten, substitute material of U-Mo particle. A surrogate plate, composed of tungsten/aluminum dispersion meat and aluminum alloy cladding, is manufactured with the same fabrication process with that of fuel plate except that a tungsten powder is used instead of U-Mo powder. A modal test showed that the surrogate plate and fuel plate have similar dynamic characteristics, and a tensile test demonstrated the similarity of the material property up to the yield strength range. The conducted tests proved that the surrogate tungsten plate has equivalent mechanical behaviors with that of a fuel plate, which leads to the acceptable use of a surrogate fuel assembly using tungsten/aluminum dispersion meat in various mechanical tests. The surrogate fuel assembly can be utilized for various out-of-pile characteristic tests, which are necessary for the licensing achievement of a research reactor that uses U-Mo dispersion fuel as a driver.

Unified Molding and Simulation for Nano-structured Tungsten Carbide

  • Park, Seong-Jin;Johnson, John L.;German, Randall M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.362-363
    • /
    • 2006
  • Nano-structured tungsten carbide compacts with cobalt matrices (WC-Co) offer new opportunities for achieving superior hardness and toughness combinations. A unified modeling and simulation tool has been developed to produce maps of sintering pathways from nanocrystalline WC powder to sintered nano-structured WC-Co compacts. This tool includes (1) die compaction, (2) grain growth, (3) densification, (4) sensitivity analysis, and (5) optimization. All material parameters were obtained by curve fitting based on results with two WC-Co powders. Critical processing parameters are determined based on sensitivity analysis and are optimized to minimize grain size with high density.

  • PDF

Synthesis of Tungsten Heavy alloy Nanocomposite Powder by Ultrasonic-milling Process (초음파 밀링 공정을 이용한 텅스텐 중합금 나노복합분말의 제조)

  • Lee, Seung-Chul;Lee, Chang-Woo;Jung, Sung-Soo;Cha, Berm-Ha;Lee, Jai-Sung
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.101-107
    • /
    • 2007
  • Ultrasonic-milling of metal oxide nanopowders for the preparation of tungsten heavy alloys was investigated. Milling time was selected as a major process variable. XRD results of metal oxide nanopowders ultrasonic-milled for 50 h and 100 h showed that agglomerate size reduced with increasing milling time and there was no evidence of contamination or change of composition by impurities. It was found that nanocomposite powders reduced at $800^{\circ}C$ in a hydrogen atmosphere showed a chemical composition of 93.1W-4.9Ni-2.0Fe from EDS analysis. Hardness of sintered part using 50 h and 100 h powder samples was 399 Hv and 463 Hv, respectively, which is higher than the that of commercial products (330-340 Hv).

The Effects of Molybdenum Content on the Dynamic Properties of Tungsten-based Heavy Alloys

  • Lee, Woei-Shyan;Chan, Tien-Yin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1155-1156
    • /
    • 2006
  • Hopkinson bar dynamic test under strain rates ranging from 2000 $s^{-1}$ to 8000 $s^{-1}$ at room temperature revealed that the flow stress of tungsten heavy alloys depended strongly on the strain, strain rate, and the content of molybdenum. The variation of flow stress was caused by the competition between work hardening and heat softening in the materials at different strain rates. The high temperature strength of the matrix phase was increased by the addition of molybdenum, which enhanced the strength of the tungsten heavy alloys in high strain rate test.

  • PDF

Oxidation Behavior of WC-TiC-TaC Binderless Cemented Carbide under Low Partial Pressure of Oxygen

  • Uchiyama, Yasuo;Ueno, Shuji;Sano, Hideaki;Tanaka, Hiroki;Nakahara, Kenji;Sakaguchi, Shigeya;Nakano, Osamu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.355-356
    • /
    • 2006
  • WC-TiC-TaC binderless cemented carbide was oxidized under low partial pressure of oxygen (50ppm) at 873K for 1 to 20 h. Surface roughness was measured using atomic force microscope, and effect of TiC amount on oxidation behavior of the carbide was investigated. WC phase was oxidized more easily than WC-TiC-TaC solid solution phase. With an increase in TiC amount, WC-TiC-TaC phase increased and the oxidation resistance of the carbide increased.

  • PDF

Synthesis of Tungsten Carbide Powders by SHS Method (SHS법에 의한 탄화텅스텐 분말 합성)

  • Jun, H.B.;Cho, D.H.;Lee, H.B.;Park, S.
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1159-1168
    • /
    • 1994
  • We powders were synthesized from W powders in differnet particle sizes by Self-propagating High-temperature Synthesis process (SHS) using a chemical furnace. The effects of the mole ratio of chemical fuel content, pellet thickness and the mole ratio between carbon and tungsten (C/W Ratio) on synthesis were investigated with the tungsten powders have different particle size each other. Compositional and structural characterization of these powders was carried out by scanning electron microscope (SEM0 and x-ray diffractometer. Powder characterization was carried out by the measurement of particle size distribution with laser-particle size analyzer. The amounts of WC obtained by SHS process depend very much on the particle size of tungsten powder and heat contents given in a product, i.e. as the particle size of W powder is smaller, the amounts of WC produced increase. Also the more heat contents is given, the more amounts of WC increase. By optimizing the synthesis conditions, it is possible to fabricate WC powders which have little secondary phases (W2C, C).

  • PDF

The Role of Grain Boundary Diffusion in the Activated Sintering of Tungsten Powder (텅스텐 활성소결에서 입계확산의 역할)

  • 이재성
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.79-84
    • /
    • 1994
  • The mechanism of activated sintering of tungsten powder was discussed in terms of diffusion and segregation of activator atoms at W grain boundaries. Shrinkage behaviours of W-0.2wt.% Ni, W-0.2wt.% Cu or pure W powder compacts during sintering at low temperatures of 900~ $1200^{\circ}C$ were investigated. It was found that the Cu additive inhibits sintering process causing lower densification than pure W compact while remarkable shrinkage occurred in the Ni added W powder. Such contrary effect was explained by comparing self diffusion processes along Ni or Cu segregated W boundaries in which Ni segregants enhance but Cu atoms retard the migration of W atoms at W boundaries.

  • PDF