• Title/Summary/Keyword: Tungsten Alloy

Search Result 185, Processing Time 0.024 seconds

Microstructure and Mechanical Properties of Clad(A4045/A3003) Al Alloy by Gas Tungsten Arc Welding (가스텅스텐아크 용접한 클래드(A4045/A3003) 알루미늄 합금의 기계적성질 및 미세조직)

  • Kim, Ki-Bin;Gook, Jin-Seon;Yoon, Dong-Ju;Kim, Byung-Il;Lee, Il-Cheon
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.73-78
    • /
    • 2008
  • In this paper, research was the variation of microstructure and mechanical properties of clad(A4045/A3003) Al alloy sheet by gas tungsten arc welding. Tensile properties of the gas tungsten arc welding joint decreased because of the softened heat affected zone(HAZ). The hardness of HAZ was lower than that of base metal, because relieved the work hardening effect of the welding heat. Hardness distribution of the weld zone with the base metal appears similarly, but the hardness of HAZ decreased remarkably. The microstructure in the weld zone of A4045 clad layer was formed a coarse columner grains of Si-rich. In the case of large weld heat input, the Si of the A4045 were diffused and until A3003 weld zone they decreased the strength.

Distinct properties of tungsten austenitic stainless alloy as a potential nuclear engineering material

  • Salama, E.;Eissa, M.M.;Tageldin, A.S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.784-791
    • /
    • 2019
  • In the present study, a series of tungsten austenitic stainless steel alloys have been developed by interchanging the molybdenum in standard SS316 by tungsten. This was done to minimize the long-life residual activation occurred in molybdenum and nickel after decommissioning of the power plant. The microstructure and mechanical properties of the prepared alloys are determined. For the sake of increasing multifunction property of such series of tungsten-based austenitic stainless steel alloys, gamma shielding properties were studied experimentally by means of NaI(Tl) detector and theoretically calculated by using the XCOM program. Moreover, fast neutrons macroscopic removal cross-section been calculated. The obtained combined mechanical, structural and shielding properties indicated that the modified austenitic stainless steel sample containing 1.79% tungsten and 0.64% molybdenum has preferable properties among all other investigated samples in comparison with the standard SS316. These properties nominate this new composition in several nuclear application domains such as, nuclear shielding domain.

Multi-step Internal Nitriding of Tungsten-titanium Alloys

  • Nagae, Masahiro;Yoshio, Tetsuo;Takada, Jun;Hiraoka, Yutaka;Takida, Tomohiro
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1157-1158
    • /
    • 2006
  • Internally nitrided dilute W-Ti alloy specimens having a heavily deformed surface microstructure were prepared by a multi-step internal nitriding at 1573-2073 K. Primary nitriding below their recrystallization temperature induced a precipitation of ultrafine TiN particles. After secondary and tertiary nitriding, those precipitates grew into rod-like TiN with a length of 20-60 nm. The recrystallization temperature after nitriding was elevated above 2073 K. The yield strength at 1773 K obtained from nitrided W-0.5 mass% Ti alloy was about 5 times as large as that of the recrystallized specimen. DBTT of the nitrided alloys was about 373 K.

  • PDF

Evaluation on Mechanical Properties of Sintered Tungsten Materials by Solvents (소결된 텅스텐 재료의 용매에 의한 특성 평가)

  • Park, Kwang-Mo;Lee, Sang-Pill;Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.289-294
    • /
    • 2021
  • Tungsten (W) is used as a facing material for nuclear fusion reactors, and it is used in conjunction with structural materials such as copper alloy (CuCrZr), graphite, or stainless steel. On the other hand, since tungsten is a material with a high melting point, a method that can be manufactured at a lower temperature is important. Therefore, in this study, tungsten, which is a facing material, was attempted to be manufactured using a pressure sintering method. Material properties of sintered tungsten materials were analyzed for each solvent using two types of solvents, acetone and polyethylene glycol. The sintered tungsten material using acetone as a solvent exhibited a hardness value of about 255 Hv, and when polyethylene glycol was used, a hardness value of about 200 Hv was shown. The flexural strength of the sintered tungsten material was 870 MPa and 307 MPa, respectively, when acetone and polyethylene glycol were used as solvents. The sintered tungsten material using acetone as a solvent caused densification between particles, which served as a factor of increasing the strength.