Browse > Article
http://dx.doi.org/10.1016/j.net.2018.12.021

Distinct properties of tungsten austenitic stainless alloy as a potential nuclear engineering material  

Salama, E. (Physics Department, Faculty of Science, Ain Shams University)
Eissa, M.M. (Steel Technology Department, Central Metallurgical Research and Development Institute (CMRDI))
Tageldin, A.S. (Basic Sciences Department, Faculty of Engineering, The British University in Egypt (BUE))
Publication Information
Nuclear Engineering and Technology / v.51, no.3, 2019 , pp. 784-791 More about this Journal
Abstract
In the present study, a series of tungsten austenitic stainless steel alloys have been developed by interchanging the molybdenum in standard SS316 by tungsten. This was done to minimize the long-life residual activation occurred in molybdenum and nickel after decommissioning of the power plant. The microstructure and mechanical properties of the prepared alloys are determined. For the sake of increasing multifunction property of such series of tungsten-based austenitic stainless steel alloys, gamma shielding properties were studied experimentally by means of NaI(Tl) detector and theoretically calculated by using the XCOM program. Moreover, fast neutrons macroscopic removal cross-section been calculated. The obtained combined mechanical, structural and shielding properties indicated that the modified austenitic stainless steel sample containing 1.79% tungsten and 0.64% molybdenum has preferable properties among all other investigated samples in comparison with the standard SS316. These properties nominate this new composition in several nuclear application domains such as, nuclear shielding domain.
Keywords
Austenitic stainless steel; Tungsten; Microstructure; Mechanical properties; Gamma and neutron shielding;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 V. Karthik, S. Murugan, P. Parameswaran, C.N. Venkiteswaran, K.A. Gopal, N.G. Muralidharan, S. Saroja, K.V. Kasiviswanathan, Austenitic stainless steels for fast reactors - irradiation experiments, property evaluation and microstructural studies, Energy Procedia (2011) 257-263, https://doi.org/10.1016/j.egypro.2011.06.033.   DOI
2 R.L. Klueh, P.J. Maziasz, The microstructure of chromium-tungsten steels, Metall. Trans. A (1989), https://doi.org/10.1007/BF02653916.   DOI
3 J. Zhao, T. Lee, J.H. Lee, Z. Jiang, C.S. Lee, Effects of tungsten addition on the microstructure and mechanical properties of microalloyed forging steels, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. (2013), https://doi.org/10.1007/s11661-013-1695-x.   DOI
4 S. Prifiharni, M.S. Anwar, A. Nikitasari, E. Mabruri, The hardness, microstructure, and pitting resistance of austenitic stainless steel Fe25Ni15Cr with the addition of tungsten, niobium, and vanadium, AIP Conf. Proc. (2018), https://doi.org/10.1063/1.5038323.   DOI
5 W.C. Leslie, The Physical Metallurgy of Steels, first ed., Hempisphere Pub. Corp, Washington, 1981. New York : McGraw-Hill.
6 E.B. Haugan, M. Naess, C.T. Rodriguez, R. Johnsen, M. Iannuzzi, Effect of Tungsten on the Pitting and Crevice Corrosion Resistance of Type 25Cr Super Duplex Stainless Steels, Corrosion, 2017, https://doi.org/10.5006/2185.   DOI
7 Jun-ichi Higuchi and Eiki Nagashima, Development of $DP28W^{TM}$ duplex stainless, Stainl. Steel World. (n.d.) 29-32. http://www.stainless-steel-world.net/pdf/DP28W_duplex.pdf.
8 M. Bastürk, J. Arztmann, W. Jerlich, N. Kardjilov, E. Lehmann, M. Zawisky, Analysis of neutron attenuation in boron-alloyed stainless steel with neutron radiography and JEN-3 gauge, J. Nucl. Mater. 341 (2005) 189-200, https://doi.org/10.1016/j.jnucmat.2005.02.003.   DOI
9 L. Vehovar, M. Tandler, Stainless steel containers for the storage of low and medium level radioactive waste, Nucl. Eng. Des. (2001), https://doi.org/10.1016/S0029-5493(00)00443-X.   DOI
10 M. Buyukyildiz, M. Kurudirek, M. Ekici, O._Icelli, Y. Karabul, Determination of radiation shielding parameters of 304L stainless steel specimens from welding area for photons of various gamma ray sources, Prog. Nucl. Energy 100 (2017) 245-254, https://doi.org/10.1016/j.pnucene.2017.06.014.   DOI
11 N.M. Ismail, N.A.A. Khatif, M.A.K.A. Kecik, M.A.H. Shaharudin, The effect of heat treatment on the hardness and impact properties of medium carbon steel, IOP Conf. Ser. Mater. Sci. Eng. (2016), https://doi.org/10.1088/1757-899X/114/1/012108.   DOI
12 J. Feldstein, F. Lake, A new constitution diagram for predicting ferrite content of stainless steel weld metals, Mater. Des. 14 (1993) 345-348, https://doi.org/10.1016/0261-3069(93)90110-H.   DOI
13 S.U. El-Kameesy, E. Salama, Radioactive contamination of the atmosphere of Cairo, Egypt, from the Fukushima Dai-ichi nuclear plant accident, Isot. Environ. Health Stud. 49 (2013), https://doi.org/10.1080/10256016.2013.771636.   DOI
14 Jin I. Suk, Chang N. Park, Soon H. Hong, Young G. Kim, Development and properties of tungsten-bearing stainless maraging steels, Mater. Sci. Eng. A. 138 (1991) 267-273, https://doi.org/10.1016/0921-5093(91)90696-K.   DOI
15 L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom - a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. (2004) 653-654, https://doi.org/10.1016/j.radphyschem.2004.04.040.   DOI
16 J.E. Martin, Phys. Radiat. Protect. (2011), https://doi.org/10.1002/9783527667062.   DOI
17 J.J. Duderstadt, L.J. Hamilton, Nuclear reactor analysis, Mech. Eng. 31 (1976) 138-142, https://doi.org/10.1109/TNS.1977.4329257.   DOI
18 B. Stellwag, The mechanism of oxide film formation on austenitic stainless steels in high temperature water, Corros. Sci. 40 (1998) 337-370, https://doi.org/10.1016/S0010-938X(97)00140-6.   DOI
19 S. Sahin, M. Ubeyli, A review on the potential use of austenitic stainless steels in nuclear fusion reactors, J. Fusion Energy 27 (2008) 271-277, https://doi.org/10.1007/s10894-008-9136-3.   DOI
20 B. Van Der Schaaf, Structural materials requirements for in-vessel components of fusion power plants, Fusion Eng. Des. 51-52 (2000) 43-54, https://doi.org/10.1016/S0920-3796(00)00318-5.   DOI
21 Y. Choi, Y. Baik, B.M. Moon, D.S. Sohn, Corrosion and wear properties of cold rolled 0.087% Gd lean duplex stainless steels for neutron absorbing material, Nucl. Eng. Technol. 48 (2016) 164-168, https://doi.org/10.1016/j.net.2015.10.002.   DOI
22 K. Karthick, S. Malarvizhi, V. Balasubramanian, S.A. Krishnan, G. Sasikala, S.K. Albert, Tensile and impact toughness properties of various regions of dissimilar joints of nuclear grade steels, Nucl. Eng. Technol. (2017), https://doi.org/10.1016/j.net.2017.10.003.   DOI
23 N.H. Heo, H.C. Lee, Effect of tungsten addition on the ductile-brittle-ductile transition in Fe-8Mn-7Ni-W maraging steels, Scripta Metall. Mater. (1995), https://doi.org/10.1016/0956-716X(95)00439-3.   DOI
24 P. Yvon, F. Carre, Structural materials challenges for advanced reactor systems, J. Nucl. Mater. 385 (2009) 217-222, https://doi.org/10.1016/j.jnucmat.2008.11.026.   DOI
25 V.P. Singh, N.M. Badiger, Gamma ray and neutron shielding properties of some alloy materials, Ann. Nucl. Energy 64 (2014) 301-310, https://doi.org/10.1016/j.anucene.2013.10.003.   DOI
26 M.M. Eissa, S.U. El-kameesy, S.A. El-Fiki, S.N. Ghali, R.M. El Shazly, A. Saeed, Attenuation capability of low activation-modified high manganese austenitic stainless steel for fusion reactor system, Fusion Eng. Des. 112 (2016) 130-135, https://doi.org/10.1016/j.fusengdes.2016.08.002.   DOI
27 T.S. Byun, N. Hashimoto, K. Farrell, Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels, Acta Mater. 52 (2004) 3889-3899, https://doi.org/10.1016/j.actamat.2004.05.003.   DOI
28 K.D. Min, S. Hong, D.W. Kim, B.S. Lee, S.J. Kim, Fatigue crack growth characteristics of nitrogen-alloyed type 347 stainless steel under operating conditions of a pressurized water reactor, Nucl. Eng. Technol. 49 (2017) 752-759, https://doi.org/10.1016/j.net.2017.01.019.   DOI
29 S. Sgobba, P. Libeyre, D.J. Marcinek, A. Nyilas, A comparative assessment of metallurgical and mechanical properties of two austenitic stainless steels for the conductor jacket of the ITER Central Solenoid, Fusion Eng. Des. (2013) 2484-2487, https://doi.org/10.1016/j.fusengdes.2013.05.002.   DOI