• 제목/요약/키워드: Tungsten

검색결과 1,583건 처리시간 0.036초

Electrical Properties of Tungsten Oxide Interfacial Layer for Silicon Solar Cells

  • Oh, Gyujin;Kim, Eun Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.196.2-196.2
    • /
    • 2015
  • There are various issues fabricating the successful and efficient solar cell structures. One of the most important issues is band alignment technique. The solar cells make the carrier in their active region over the p-n junction. Then, electrons and holes diffuse by minority carrier diffusion length. After they reach the edge of solar cells, there exist large energy barrier unless the good electrode are chosen. Many various conductor with different work functions can be selected to solve this energy barrier problem to efficiently extract carriers. Tungsten oxide has large band gap known as approximately 3.4 eV, and usually this material shows n-type property with reported work function of 6.65 eV. They are extremely high work function and trap level by oxygen vacancy cause them to become the hole extraction layer for optical devices like solar cells. In this study, we deposited tungsten oxide thin films by sputtering technique with various sputtering conditions. Their electrical contact properties were characterized with transmission line model pattern. The structure of tungsten oxide thin films were measured by x-ray diffraction. With x-ray photoelectron spectroscopy, the content of oxygen was investigated, and their defect states were examined by spectroscopic ellipsometry, UV-Vis spectrophotometer, and photoluminescence measurements.

  • PDF

RTP 어닐과 추가 이온주입에 의한 저-저항 텅스텐 비트-선 구현 (Low-resistance W Bit-line Implementation with RTP Anneal & Additional ion Implantation)

  • 이용희;이천희
    • 대한전자공학회논문지SD
    • /
    • 제38권5호
    • /
    • pp.375-381
    • /
    • 2001
  • 디바이스의 크기가 0.25㎛이하로 축소됨에 따라 DRAM(Dynamic Random Access Memory) 제조업체들은 칩 크기를 줄이고 지역적인 배선으로 사용하기 위해서 기존의 텅스텐-폴리사이드 비트-선에서 텅스텐 비트-선으로 대체하고 있다. 본 논문에서는 다양한 RTP 온도와 추가 이온주입을 사용하여 낮은 저항을 갖는 텅스텐 비트-선 제조 공정에 대해 다루었다. 그 결과 텅스텐 비트선 저항에 중요한 메계변수는 RTP Anneal 온도와 BF₂ 이온 주입 도펀트임을 알 수 있었다. 이러한 텅스텐 비트-선 공정은 고밀도 칩 구현에 중요한 기술이 된다.

  • PDF

혼합 산화제를 사용한 텅스텐 막의 전기화학적 부식 및 CMP 특성 (Electrochemical Corrosion and Chemical Mechanical Polishing(CMP) Characteristics of Tungsten Film using Mixed Oxidizer)

  • 나은영;서용진;이우선
    • 한국전기전자재료학회논문지
    • /
    • 제18권4호
    • /
    • pp.303-308
    • /
    • 2005
  • In this paper, the effects of oxidants on tungsten chemical mechanical polishing (CMP) process were investigated using three different oxidizers such as Fe(NO₃)₃, KIO₃ and H₂O₂. Moreover, the interaction between the tungsten film and the oxidizer was discussed by potentiodynamic polarization measurement with three different oxidizers, in order to compare the effects of W-CMP and electrochemical characteristics on the tungsten film as a function of oxidizer. As an experimental result, the tungsten removal rate reached a maximum at 5 wt% Fe(NO₃)₃concentration, and when 5 wt% H₂O₂was added in the slurry, the removal rate of W increased. Also, the microstructures of surface layer by atomic force microscopy(AFM) image were greatly influenced by the slurry chemical composition of oxidizers. It was shown that the surface roughness and removal rate of the polished surface were improved in Fe(NO₃)₃than KIO₃. The electrochemical results indicate that the corrosion current density of the 5 wt% H₂O₂ and 5 wt% H₂O/sub 2+/+ 5 wt% Fe(NO₃)₃was higher than the other oxidizers. Therefore, we conclude that the W-CMP characteristics are strongly dependent on the kinds of oxidizers and the amounts of oxidizer additive.

$W/KClO_4/BaCrO_4$ 지연제의 연소 메카니즘 (The Combustion Mechanism of Tungsten-potassium Perchlorate-barium Chromate Delay power)

  • Nakamura, Hidesugu;Akiyoshi, Miyako;Hara, Yasutake
    • 화약ㆍ발파
    • /
    • 제18권1호
    • /
    • pp.53-58
    • /
    • 2000
  • Thermal analysis, analysis of combustion residue and combustion characteristics measure ment such as burning rate or temperature were carried out to clarify the combustion mechanism of a tungsten- potassium perchlorate-barium chromate chromate delay powder. The results obtained are as follows. The main reaction of the delay powder of tungsten-potassium perchlorate-barium chromate is the oxidation of tungsten by potassium perchlorate. Barium chromate acts as a burning rate modifier, and the smaller the larger is the burning rate. Three types of delay composition used in this study show characteristic burning behavior. A stoichiomertric or a oxidizer-rich composition has a small linear burning rate. although it is has a large heat of combustion. On the other hand, a tungsten-excess or a fuel-rich composition with a small heat of combustion has a larger linear burning rate than the former, showing a small fractional oxidation of tungeten (below 10%) contained in the delay powder. From these results, a surface combustion mechanism is proposed for the combustion mechanism of this delay powder.

  • PDF

H2O2 산화제가 W/Ti 박막의 전기화학적 분극특성 및 CMP 성능에 미치는 영향 (Electrochemical Polarization Characteristics and Effect of the CMP Performances of Tungsten and Titanium Film by H2O2 Oxidizer)

  • 나은영;서용진;이우선
    • 한국전기전자재료학회논문지
    • /
    • 제18권6호
    • /
    • pp.515-520
    • /
    • 2005
  • CMP(chemical mechanical polishing) process has been attracted as an essential technology of multi-level interconnection. Also CMP process got into key process for global planarization in the chip manufacturing process. In this study, potentiodynamic polarization was carried out to investigate the influences of $H_2O_2$ concentration and metal oxide formation through the passivation on tungsten and titanium. Fortunately, the electrochemical behaviors of tungsten and titanium are similar, an one may expect. As an experimental result, electrochemical corrosion of the $5\;vol\%\;H_2O_2$ concentration of tungsten and titanium films was higher than the other concentrations. According to the analysis, the oxidation state and microstructure of surface layer were strongly influenced by different oxidizer concentration. Moreover, the oxidation kinetics and resulting chemical state of oxide layer played critical roles in determining the overall CMP performance. Therefore, we conclude that the CMP characteristics tungsten and titanium metal layer including surface roughness were strongly dependent on the amounts of hydrogen peroxide oxidizer.

초음파분무열분해법에 의한 나노 텅스텐 분말의 형성 및 특성에 관하여 (The Characteristics and Formation of Tungsten Nano-Powder by Ultrasonic Spray Pyrolysis Method)

  • 이호진;윤중현;최진일
    • 한국표면공학회지
    • /
    • 제41권4호
    • /
    • pp.174-179
    • /
    • 2008
  • Nanosize tungsten powder was synthesized by ultrasonic spray pyrolysis method through a solution containing ammonium metatungstate hydrate $[(NH_4)_6W_{12}O_{39}{\cdot}H_2O]$ and reduction treatment. It was expected the improvement of mechanical properties due to increasing surface free energy and surface activity. Starting solutions with each concentration, reaction temperature and reduction treatment were significantly influenced on the formation of tungsten size and phase. It was found that particle size was decreased with concentration of starting solution and surface tension were decreased. The particle size was increased at thermal decomposition temperature above $600^{\circ}C$ by neck growth of interparticles. Tungsten particles were formed by reduction reaction in atmosphere of hydrogen gas at the temperature above $700^{\circ}C$.

고온가공기법을 이용한 초경소재 가공기술에 관한 연구 (A Study on Cutting Method of Tungsten Carbide Material Using Hot Machining)

  • 정연행;조영갑
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.315-318
    • /
    • 2004
  • The Advantages of hot machining are the reduction of cutting forces, tool wear, and the increase of material removal rates. In this study, a hot-machining characteristics of milling by CBN tip was exprimentely analyzed, and the influence of the surface temperature and the depth of cut on the tool life were investigated. The selection of a heating method for obtaining ideal temperature of metals in machining is important. Faulty heating methods could induce unwanted structural changes in the workpiece and increase the cost. This study uses gas flame heating. It is obtained that tungsten carbide-alloyed has a recrystallisation temperature range of $800-1000^{\circ}C$ which is the high heating temperature that might induce unwanted structural changes. If it is performed at temperatures higher than $800^{\circ}C$ in machining, the possibility of unwanted structural changes and the increased wear of tool can be shown. Consequently, in hot machining of tungsten carbide-alloy, this study has chosen $400^{\circ}C-600^{\circ}C$ because the heating temperature might be appropriate in view of the cost and workpiece considerations. The results of this study experimentally shows a new machining method for tungsten carbide-alloyed that decreases the wear rate of machining tools

  • PDF

에멀전증발법으로 제조된 미세 산화텅스텐 분말의 특성 (Characteristics of Fine WO3 Powders Prepared by Emulsion Evaporation)

  • 안종관;신창훈;이만승;이충효
    • 한국분말재료학회지
    • /
    • 제9권2호
    • /
    • pp.89-95
    • /
    • 2002
  • Spherical fine powders of tungsten oxide powders were prepared by the emulsion evaporation method. The characteristics of the powders prepared were examined by means of TGA, X-ray diffraction, SEM and image analysis. The emulsions were prepared by fast mixing of aqueous phase containing tugsten and the organic phase which composed of kerosene, surfactant, and paraffin oil. Precursors were made by evaporating the emulsionin the kerosene bath at $160^{\circ}C$, and then calcined at $650^{\circ}C$ in order to produce tungsten oxide powders. The average particle size of the tungsten oxide powders was $0.5\mutextrm{m}$ and their shapes were spherical at the both case of w/o and o/w type emulsions. As the HLB value of the surfactant increased and the concentration of tungsten ions decreased the mean particle siqe of tungsten oxide powders decreased whereas agglomerationsize increased. The optimum concentration of Span 80 was 8 percent by volume, and the optimum stirring speed in the emulsion formation was 5000 rpm in order to obtain fine and well dispersed $WO_3$ powders.

Development of Tungsten Heavy Alloy with Hybrid Structure for Kinetic Energy Penetrator

  • Baek, Woon-Hyung;Kim, Eun-Pyo;Song, Heung-Sub;Hong, Moon-Hee;Lee, Seong;Kim, Young-Moo;Lee, Sung-Ho;Noh, Joon-Woong;Ryu, Joo-Ha
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.944-945
    • /
    • 2006
  • A new tungsten heavy alloy with hybrid structure was manufactured for the kinetic energy penetrator. The tungsten heavy alloy is composed of two parts: core region is molybdenum added heavy alloy to promote the self-sharpening; outer part encompassing the core is conventional heavy alloy to sustain severe load in a muzzle during firing. From ballistic test, it was found that the penetration performance of the hybrid structure tungsten heavy alloy is higher than that of conventional heavy alloy. This heavy alloy is thought to be very useful for the penetrator in the near future.

  • PDF

High Temperature Thermo-mechanical Properties of HfC Reinforced Tungsten Matrix Composites

  • Umer, Malik Adeel;Lee, Dong Ju;Ryu, Ho Jin;Hong, Soon Hyung
    • Composites Research
    • /
    • 제28권6호
    • /
    • pp.366-371
    • /
    • 2015
  • In order to improve the mechanical properties of tungsten at room and elevated temperature, hafnium carbide (HfC) reinforced tungsten matrix composites were prepared using the spark plasma sintering technique. The effect of HfC content on the compressive strength and flexural strength of the tungsten composites was investigated. Mechanical properties of the composites were also measured at elevated temperatures and their trends, with varying reinforcement volume fraction, were studied. The effect of reinforcement fraction on the thermal properties of the composites was investigated. The thermal conductivity and diffusivity of the composites decreased with increasing temperature and reinforcement volume fraction. An inherently low thermal conductivity of the reinforcement as well as interfacial losses was responsible for lower values of thermal conductivity of the composites. Values of coefficient of thermal expansion of the composites were observed to increase with HfC volume fraction.