• Title/Summary/Keyword: Tunable Filter

Search Result 219, Processing Time 0.024 seconds

High Purification of Hg2Br2 Powder for Acousto-Optic Tunable Filters Utilizing a PVT Process (PVT공정을 이용한 음향광학 가변 필터용 Hg2Br2 파우더의 고순도 정제)

  • Kim, Tae Hyeon;Lee, Hee Tae;Kwon, In Hoi;Kang, Young-Min;Woo, Shi-Gwan;Jang, Gun-Eik;Cho, Byungjin
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.732-737
    • /
    • 2018
  • We develop a purification process of $Hg_2Br_2$ raw powders using a physical vapor transport(PVT) process, which is essential for the fabrication of a high performance acousto-optic tunable filter(AOTF) module. Specifically, we characterize and compare three $Hg_2Br_2$ powders: $Hg_2Br_2$ raw powder, $Hg_2Br_2$ powder purified under pumping conditions, and $Hg_2Br_2$ powder purified under vacuum sealing. Before and after purification, we characterize the powder samples through X-ray diffraction and X-ray photoelectron spectroscopy. The corresponding results indicate that physical properties of the $Hg_2Br_2$ compound are not damaged even after the purification process. The impurities and concentration in the purified $Hg_2Br_2$ powder are evaluated by inductively coupled plasma-mass spectroscopy. Notably, compared to the sample purified under pumping conditions, the purification process under vacuum sealing results in a higher purity $Hg_2Br_2$ (99.999 %). In addition, when the second vacuum sealing purification process is performed, the remaining impurities are almost removed, giving rise to $Hg_2Br_2$ with ultra-high purity. This high purification process might be possible due to independent control of impurities and $Hg_2Br_2$ materials under the optimized vacuum sealing. Preparation of such a highly purified $Hg_2Br_2$ materials will pave a promising way toward a high-quality $Hg_2Br_2$ single crystal and then high performance AOTF modules.

Time-encoded Near-infrared (NIR) Spectroscopic Comparison of Absorbance Measurement Using an Acousto-optic NIR Swept Laser Source (음향광학 파장선택 필터 기반 파장훑음 레이저를 이용한 시간-인코딩 된 근적외선 흡광도 측정 비교 연구)

  • Jang, Hansol;Kim, Gyeong Hun;Han, Ga-Hee;Cho, Jaedu;Kim, Chang-Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.1
    • /
    • pp.22-27
    • /
    • 2017
  • Time-encoded near-infrared spectroscopy (NIRS) system is proposed, based on a near-infrared (NIR) swept laser source, for comparison to the conventional NIRS method using a detector-type spectrometer. The cavity of the NIR swept laser source consists of a semiconductor optical amplifier (SOA) with a gain region around 800 nm, and several fiber-optic components. To change the output wavelength in time using an applied electric radio-frequency signal, an acousto-optic tunable filter (AOTF) is introduced in the fiber ring cavity configuration. To demonstrate the feasibility of an NIR swept laser source for NIRS imaging, the spectroscopic comparison of two kinds of absorbance-measuring systems a detector-type spectrometer using a white light source, and a source-type spectrometer using an NIR swept laser is successfully performed with an NIR-absorbing dye.

A Fully Integrated Low-IF Receiver using Poly Phase Filter for VHF Applications (다중위상필터(Poly Phase Filter)를 이용한 VHF용 Low-IF 수신기 설계)

  • Kim, Seong-Do;Park, Dong-Woon;Oh, Seung-Hyeub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.482-489
    • /
    • 2010
  • In this paper we have proposed a new architecture of DQ-IRM(Double-Quadrature Image Rejection Mixer) for image rejection in the low-IF receiver. It consist of a frequency-tunable RF PPF(Poly Phase Filter) and the quadrature mixers. The conventional DQ-IRM generates the quadrature RF signals for the RF wide band at once. But the proposed DQ-IRM with the frequency-tuable RF PPF generates the quadrature RF signals for the narrow band of 2~3 channels bandwidth, which is partitioned from the RF wide band. We designed the CMOS RF tuner for T-DMB(Terrestrial Digital Multimedia Broadcasting) with the proposed 3rd DQ-IRM using a 0.18um CMOS technology and verified the performances of the designed receiver such as the image rejection ratio, the noise figure and the power consumption. The overall NF of the RF tuner is about 1.26 dB and the image reject ratio is about 51 dB. The power consumption is 55.8 mW at 1.8 V supply voltage. The chip area is $3.0{\times}2.5mm^2$.

Research about Hyperspectral Imaging System for Pre-Clinical testing of Small Animal (소형동물 전임상실험을 위한 하이퍼스펙트럼 영상장비 연구)

  • Lee, kyeong-Hee;Choi, Young-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2208-2213
    • /
    • 2007
  • In this study we have developed a hyperspectrum imaging system for highly sensitive and effective imaging analysis. An optical setup was designed using acoustic optical tunable filter (AOTF) for high sensitive hyperspectrum imaging. Light emitted by mercury lamp gets split in to diffracted and undiffracted beams while passing though AOTF. GFP transfected HEK-293 cell line was used as a model for in vitro imaging analysis. Cells were first, analyzed by fluorescence microscope followed by flow cytometric analysis. Flow cytometric analysis showed 66.31% transfection yield in GFP transfected HEK-293 cells. Various images of GFP transfected HEK-293 cell were grabbed by collecting the diffracted light using a CCD over a dynamic range of frequency of 129-171 MHz with an interval of 3 MHz. Subsequently, for in vivo image analysis of GFP transfected cells in mouse, a whole-body-imaging system was constructed. The blue light of 488 nm wavelength was obtained from a Xenon arc lamp using an appropriate filter and transmitted through an optical cable to a ring illuminator. To check the efficacy of the newly developed whole-body-imaging system, a comparative imaging analysis was performed on a normal mouse in presence and absence of Xenon arc irradiation. The developed hyperspectrum imaging analysis with AOTF showed the highest intensity of green fluorescent protein at 153 MHz of frequency and 494 nm of wavelength. However, the fluorescence intensity remained same as that of the background below 138 MHz (475 nm) and above 162 MHz (532 nm). The mouse images captured using the constructed whole-body-imaging system appeared monochromatic in absence of Xenon arc irradiation and blue when irradiated with Xenon arc lamp. Nevertheless, in either case mouse images appeared clearly.

Characterization of Wavelength Swept Laser with a Scanning Frequency at 1300 nm (1300 nm 대역 파장 훑음 레이저의 훑음 주파수에 따른 출력 특성)

  • Lee, Byoung-Chang;Oh, Min-Hyun;Jeon, Min-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.3
    • /
    • pp.189-194
    • /
    • 2009
  • We demonstrate a ring type wavelength swept laser incorporating a fiber Fabry-Perot tunable filter in a laser cavity using 1300 nm semiconductor optical amplifier as a gain medium. The output characteristics of the wavelength swept laser according to the applied scanning frequencies are analyzed in the temporal and spectral domain. The output of the wavelength swept laser decreases dramatically as the scanning frequency increases. And there is a significant peak power imbalance between the forward scan and the backward scan as the scanning frequency increases. Its use in practical applications might be limited.

K-domain Linearization Using Fiber Bragg Grating Array Based on Fourier Domain Optical Coherence Tomography (광섬유 브라그 격자를 이용한 퓨리어 영역 광 결맞음 단층 촬영에서의 파수영역 선형화)

  • Lee, Byoung-Chang;Eom, Tae-Joong;Jeon, Min-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.2
    • /
    • pp.72-76
    • /
    • 2011
  • We demonstrate a k-domain linearization using a fiber Bragg grating (FBG) array for Fourier domain optical coherence tomography based on a wavelength swept laser. The k-domain linearization is carried out with an interpolation method using a FBG array with five FBGs. The measured signal-to-noise ratio from the point spread function after k-domain linearization is 12 dB improved over that of without k-domain linearization at the 1 mm depth of the sample. Clear OCT imaging of the slide glass with k-domain linearization could be obtained.

Long-Period Fiber Gratings Based on Periodically Surface-Etched Structure Imprinted by Using a Photoresist Polymer (폴리머 장주기 패턴을 이용한 표면 식각된 격자 구조 기반의 장주기 광섬유 격자)

  • Park, Sang-Oh;Kwon, Oh-Jang;Han, Young-Geun
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.1-4
    • /
    • 2011
  • A new fabrication technique of long-period fiber gratings with periodically surface-etched structures is proposed. Transmission characteristics of the periodically surface-etched long-period fiber gratings are improved by changing strain because of variation of coupling strength between the core and the cladding modes. The sensitivities of the periodically surface-etched long-period fiber gratings to strain, torsion, and ambient refractive index were measured. The strain and the torsion sensitivities were measured to be $-0.033\;dB/\mu\varepsilon$ and -1.30 nm m/rad, respectively. The ambient index sensitivity was measured to be -31.33 nm/RIU from a range from 1.33 to 1.42.

Impact Monitoring in Composite Beam Using Stabilization Controlled FBG Sensor System (안정화된 FBG 센서를 이용한 복합적층보에서의 충격위치검출)

  • Bang Hyung-Joon;Park Sang-Oh;Hong Chang-Sun;Kim Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.103-106
    • /
    • 2004
  • Impact location monitoring is one of the major concerns of the smart health monitoring. For this application, multipoint ultrasonic sensors are to be employed. In this study, a multiplexed FBG sensor system with wide dynamic range was proposed and stabilization controlling system was also developed for the maintenance of maximum sensitivity of sensors. For the intensity demodulation system of FBG sensors, Fabry-Perot tunable filter(FP-TF) with 23.8nm FSR(free spectral range) was used, which behaves as two separate filters between $1530 \~ 1560$ nm range. Two FBG sensors were attached on the bottom side of the graphite/epoxy composite beam specimen, and low velocity impact tests were performed to detect the one-dimensional impact locations. Impact locations were calculated by the arrival time differences of the impact longitudinal waves acquired by the two FBGs. As a result, multiplexed in-line FBG sensors could detect the moment of impact precisely and found the impact locations with the average error of 1.32mm.

  • PDF

Multi-class support vector machines for paint condition assessment on the Sydney Harbour Bridge using hyperspectral imaging

  • Huynh, Cong Phuoc;Mustapha, Samir;Runcie, Peter;Porikli, Fatih
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.181-197
    • /
    • 2015
  • Assessing the condition of paint on civil structures is an important but challenging and costly task, in particular when it comes to large and complex structures. Current practices of visual inspection are labour-intensive and time-consuming to perform. In addition, this task usually relies on the experience and subjective judgment of individual inspectors. In this study, hyperspectral imaging and classification techniques are proposed as a method to objectively assess the state of the paint on a civil or other structure. The ultimate objective of the work is to develop a technology that can provide precise and automatic grading of paint condition and assessment of degradation due to age or environmental factors. Towards this goal, we acquired hyperspectral images of steel surfaces located at long (mid-range) and short distances on the Sydney Harbour Bridge with an Acousto-Optics Tunable filter (AOTF) hyperspectral camera (consisting of 21 bands in the visible spectrum). We trained a multi-class Support Vector Machines (SVM) classifier to automatically assess the grading of the paint from hyperspectral signatures. Our results demonstrate that the classifier generates highly accurate assessment of the paint condition in comparison to the judgement of human experts.

An Ultra-narrow Bandwidth Filter for Daytime Wind Measurement of Direct Detection Rayleigh Lidar

  • Han, Fei;Liu, Hengjia;Sun, Dongsong;Han, Yuli;Zhou, Anran;Zhang, Nannan;Chu, Jiaqi;Zheng, Jun;Jiang, Shan;Wang, Yuanzu
    • Current Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.69-80
    • /
    • 2020
  • A Rayleigh Lidar used for wind detection works by transmitting laser pulses to the atmosphere and receiving backscattering signals from molecules. Because of the weak backscattering signals, a lidar usually uses a high sensitivity photomultiplier as detector and photon counting technology for signal collection. The capturing of returned extremely weak backscattering signals requires the lidar to work on dark background with a long time accumulation to get high signal-to-noise ratio (SNR). Because of the strong solar background during the day, the SNR of lidar during daytime is much lower than that during nighttime, the altitude and accuracy of detection are also restricted greatly. Therefore this article describes an ultra-narrow bandwidth filter (UNBF) that has been developed on 354.7 nm wavelength of laser. The UNBF is used for suppressing the strong solar background that degrades the performance of Rayleigh wind lidar during daytime. The optical structure of UNBF consists of an interference filter (IF), a low resolution Fabry-Perot interferometer (FPI) and a high resolution FPI. The parameters of each optical component of the UNBF are presented in this article. The transmission curve of the aligned UNBF is measured with a tunable laser. Contrasting the result of with-UNBF and with-IF shows that the solar background received by a Licel transient recorder decreases by 50~100 times and that the SNR with-UNBF was improved by 3 times in the altitude range (35 km to 40 km) compared to with-IF at 10:26 to 10:38 on August 29, 2018. By the SNR comparison at four different times of one day, the ratio-values are larger than 1 over the altitude range (25~50 km) in general, the results illustrate that the SNR with-UNBF is better than that with-IF for Rayleigh Lidar during daytime and they demonstrate the effective improvements of solar background restriction of UNBF.