• 제목/요약/키워드: Tumorigenesis

Search Result 432, Processing Time 0.028 seconds

Flavonoids inhibit the AU-rich element binding of HuC

  • Kwak, Ho-Joong;Jeong, Kyung-Chae;Chae, Min-Ju;Kim, Soo-Youl;Park, Woong-Yang
    • BMB Reports
    • /
    • v.42 no.1
    • /
    • pp.41-46
    • /
    • 2009
  • Post-transcriptional regulation of mRNA stability by Hu proteins is an important mechanism for tumorigenesis. We focused on the molecular interactions between the HuC protein and AU-rich elements (AREs) to find chemical inhibitors of RNA-protein interactions using RNA electrophoretic mobility shift assay with non-radioactive probes. Screening of 52 natural compounds identified 14 candidate compounds that displayed potent inhibitory activity. Six (quercetin, myricetin, (-)-epigallocatechin gallate, ellagic acid, (-)-epicatechin gallate, and rhamnetin) were categorized as phytochemicals, and their $IC_{50}$ values were low ($0.2-1.8\;{\mu}M$).

MicroRNA controls of cellular senescence

  • Suh, Nayoung
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.493-499
    • /
    • 2018
  • Cellular senescence is a state of permanent cell-cycle arrest triggered by different internal and external stimuli. This phenomenon is considered to be both beneficial and detrimental depending on the cell types and biological contexts. During normal embryonic development and after tissue injury, cellular senescence is critical for tissue remodeling. In addition, this process is useful for arresting growth of tumor cells, particularly during early onset of tumorigenesis. However, accumulation of senescent cells decreases tissue regenerative capabilities and induces inflammation, which is responsible for cancer and organismal aging. Therefore cellular senescence has to be tightly regulated, and dysregulation might lead to the aging and human diseases. Among many regulators of cellular senescence, in this review, I will focus on microRNAs, small non-coding RNAs playing critical roles in diverse biological events including cellular senescence.

Emerging role of transient receptor potential (TRP) channels in cancer progression

  • Yang, Dongki;Kim, Jaehong
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.125-132
    • /
    • 2020
  • Transient receptor potential (TRP) channels comprise a diverse family of ion channels, the majority of which are calcium permeable and show sophisticated regulatory patterns in response to various environmental cues. Early studies led to the recognition of TRP channels as environmental and chemical sensors. Later studies revealed that TRP channels mediated the regulation of intracellular calcium. Mutations in TRP channel genes result in abnormal regulation of TRP channel function or expression, and interfere with normal spatial and temporal patterns of intracellular local Ca2+ distribution. The resulting dysregulation of multiple downstream effectors, depending on Ca2+ homeostasis, is associated with hallmarks of cancer pathophysiology, including enhanced proliferation, survival and invasion of cancer cells. These findings indicate that TRP channels affect multiple events that control cellular fate and play a key role in cancer progression. This review discusses the accumulating evidence supporting the role of TRP channels in tumorigenesis, with emphasis on prostate cancer.

Functional roles of CTCF in breast cancer

  • Oh, Sumin;Oh, Chaeun;Yoo, Kyung Hyun
    • BMB Reports
    • /
    • v.50 no.9
    • /
    • pp.445-453
    • /
    • 2017
  • CTCF, Zinc-finger protein, has been identified as a multifunctional transcription factor that regulates gene expression through various mechanisms, including recruitment of other co-activators and binding to promoter regions of target genes. Furthermore, it has been proposed to be an insulator protein that contributes to the establishment of functional three-dimensional chromatin structures. It can disrupt transcription through blocking the connection between an enhancer and a promoter. Previous studies revealed that the onset of various diseases, including breast cancer, could be attributed to the aberrant expression of CTCF itself or one or more of its target genes. In this review, we will describe molecular dysfunction involving CTCF that induces tumorigenesis and summarize the functional roles of CTCF in breast cancer.

Identification of Plant Factors Involving in Agrobacterium-mediated Plant Transformation

  • Nam, Jaesung
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.387-393
    • /
    • 2000
  • The process by which Agrobacterium tumefaciens genetically transforms plants involves a complex series of reactions communicated between the pathogen and the plants. To identify plant factors involved in agrobacterium-mediated plant transformation, a large number of T-DNA inserted Arabidopsis thaliana mutant lines were investigated for susceptibility to Agrobacterium infection by using an in vitro root inoculation assay. Based on the phenotype of tumorigenesis, twelve T-DNA inserted Arabidopsis mutants(rat) that were resistant to Agrobacterium transformation were found. Three mutants, rat1, rat3, and rat4 were characterized in detail. They showed low transient GUS activity and very low stable transformation efficiency compared to the wild-type plant. The resistance phenotype of rat1 and rats resulted from decreased attachment of Agrobacterium tumefaciens to inoculated root explants. They may be deficient in plant actors that are necessary for bacterial attachment to plant cells. The disrupted genes in rat1, rat3, and rat4 mutants were coding a arabinogalactan protein, a likely cell wall protein and a cellulose synthase-like protein, respectively.

  • PDF

Antioxidant and Anticancer Activities of Extract from Artemisia capillaries (인진쑥 추출물의 항산화 및 항암 활성)

  • Jung, Mee-Jung;Yin, Yu;Heo, Seong-Il;Wang, Myeong-Hyeon
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.3
    • /
    • pp.194-198
    • /
    • 2008
  • Artemisia capillaries is a major important food and medicinal resource in Korea. In order to confirm the biological activities of Artemisia capillaries, we investigated antioxidant and anticancer activities from in vitro assays. The Artemisia capillaries methanol (MeOH) extracts was used for the evaluation of DPPH scavenging, total phenolic content, total flavonoid content, hydroxyl radical (${\bullet}OH$) scavenging, reducing power assay as antioxidant activity, as well as anticancer activities as MTT assay. As a result, the Artemisia capillaries MeOH extracts showed potent antioxidative activity and anticancer activity in vitro. These results suggest that the Artemisia capillaries MeOH extracts have a potential alleviated oxidation process, cell motility activity, and tumorigenesis.

Role of MicroRNAs in the Warburg Effect and Mitochondrial Metabolism in Cancer

  • Jin, Li-Hui;Wei, Chen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7015-7019
    • /
    • 2014
  • Metabolism lies at the heart of cell biology. The metabolism of cancer cells is significantly different from that of their normal counterparts during tumorigenesis and progression. Elevated glucose metabolism is one of the hallmarks of cancer cells, even under aerobic conditions. The Warburg effect not only allows cancer cells to meet their high energy demands and supply biological materials for anabolic processes including nucleotide and lipid synthesis, but it also minimizes reactive oxygen species production in mitochondria, thereby providing a growth advantage for tumors. Indeed, the mitochondria also play a more essential role in tumor development. As information about the numorous microRNAs has emerged, the importance of metabolic phenotypes mediated by microRNAs in cancer is being increasingly emphasized. However, the consequences of dysregulation of Warburg effect and mitochondrial metabolism modulated by microRNAs in tumor initiation and progression are still largely unclear.

Metabolic Signaling to Epigenetic Alterations in Cancer

  • Kim, Jung-Ae;Yeom, Young Il
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.69-80
    • /
    • 2018
  • Cancer cells reprogram cellular metabolism to support the malignant features of tumors, such as rapid growth and proliferation. The cancer promoting effects of metabolic reprogramming are found in many aspects: generating additional energy, providing more anabolic molecules for biosynthesis, and rebalancing cellular redox states in cancer cells. Metabolic pathways are considered the pipelines to supply metabolic cofactors of epigenetic modifiers. In this regard, cancer metabolism, whereby cellular metabolite levels are greatly altered compared to normal levels, is closely associated with cancer epigenetics, which is implicated in many stages of tumorigenesis. In this review, we provide an overview of cancer metabolism and its involvement in epigenetic modifications and suggest that the metabolic adaptation leading to epigenetic changes in cancer cells is an important non-genetic factor for tumor progression, which cooperates with genetic causes. Understanding the interaction of metabolic reprogramming with epigenetics in cancers may help to develop novel or highly improved therapeutic strategies that target cancer metabolism.

Expression of galectin-3 in rat brain (랫트 뇌에서의 galectin-3의 검출)

  • Lee, Yoo-Kyoung;Kang, Hae Eun;Woo, Hee Jong
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.1
    • /
    • pp.83-88
    • /
    • 2004
  • Galectin family, endogenous ${\beta}$-galactoside-binding animal lectins, is known for the role in cell differentiation, morphogenesis, apoptosis and tumorigenesis. Galectin-3, one of family member, has been studied for its role in cell differentiation and tumor metastasis, and for its expression on epithelial cells of colon and mast cells but not in brain. Several reports, however, suggest its expression in brain including as a prion binding protein. In this report we explored possibility of galectin-3 expression in brain tissue. With Western blot and RT-PCR with rat brain tissues, we could detect galectin-3 that was not shown by conventional immunohistochemistry. Our results indicated galectin-3 was expressed in brain, and substantiate the previous report on galecin-3 as a prion-related protein in brain.

Tumor suppressor $p16^{INK4a}$ in Cancer

  • Lee, Mee-Hyun;Choi, Bu-Young;Surh, Young-Joon
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.3
    • /
    • pp.87-96
    • /
    • 2005
  • [ $p16^{INK4a}$ ] is a tumor suppressor that belongs to the INK4 family of the cyclin D-dependent kinases (cdk) inhibitors. It plays regulatory roles in cell proliferation and in tumorigenesis by interacting with Rb signaling. Abnormally elevated $p16^{INK4a}$ protein expression causes cell cycle arrest (G1/S transition) and loss of cyclin-cdk activity. In many cancers, $p16^{INK4a}$ is altered by mutation, deletion, and promoter methylation. This review summarizes the function of p16 as an important regulator of cancer pathobiology and a promising target fer developing cancer therapeutic and chemopreventive agents.

  • PDF