• Title/Summary/Keyword: Tumor-specific promoter

Search Result 78, Processing Time 0.03 seconds

Deciphering the DNA methylation landscape of colorectal cancer in a Korean cohort

  • Seok-Byung Lim;Soobok Joe;Hyo-Ju Kim;Jong Lyul Lee;In Ja Park;Yong Sik Yoon;Chan Wook Kim;Jong-Hwan Kim;Sangok Kim;Jin-Young Lee;Hyeran Shim;Hoang Bao Khanh Chu;Sheehyun Cho;Jisun Kang;Si-Cho Kim;Hong Seok Lee;Young-Joon Kim;Seon-Young Kim;Chang Sik Yu
    • BMB Reports
    • /
    • v.56 no.10
    • /
    • pp.569-574
    • /
    • 2023
  • Aberrant DNA methylation plays a pivotal role in the onset and progression of colorectal cancer (CRC), a disease with high incidence and mortality rates in Korea. Several CRC-associated diagnostic and prognostic methylation markers have been identified; however, due to a lack of comprehensive clinical and methylome data, these markers have not been validated in the Korean population. Therefore, in this study, we aimed to obtain the CRC methylation profile using 172 tumors and 128 adjacent normal colon tissues of Korean patients with CRC. Based on the comparative methylome analysis, we found that hypermethylated positions in the tumor were predominantly concentrated in CpG islands and promoter regions, whereas hypomethylated positions were largely found in the open-sea region, notably distant from the CpG islands. In addition, we stratified patients by applying the CpG island methylator phenotype (CIMP) to the tumor methylome data. This stratification validated previous clinicopathological implications, as tumors with high CIMP signatures were significantly correlated with the proximal colon, higher prevalence of microsatellite instability status, and MLH1 promoter methylation. In conclusion, our extensive methylome analysis and the accompanying dataset offers valuable insights into the utilization of CRC-associated methylation markers in Korean patients, potentially improving CRC diagnosis and prognosis. Furthermore, this study serves as a solid foundation for further investigations into personalized and ethnicity-specific CRC treatments.

DNA Methylation of Multiple Genes in Gastric Cancer: Association with CpG Island Methylator Phenotype and Helicobocter pylori Infection (위암에서 유전자 메틸화와 CpG Island Methylator Phenotype 및 Helicobacter pylori균 감염과의 연관성)

  • Jun, Kyong-Hwa;Won, Yong-Sung;Shin, Eun-Young;Cho, Hyun-Min;Im, Myoung-Goo;Chin, Hyung-Min;Park, Woo-Bae
    • Journal of Gastric Cancer
    • /
    • v.6 no.4
    • /
    • pp.227-236
    • /
    • 2006
  • Purpose: Methylation of gene regulatory elements plays an important role in gene inactivation without genetic alteration. Gastric cancer is one of the tumors that exhibit a high frequency of CpG island hypermethylation. The purpose of this study was to investigate the occurrence of CpG island hypermethylation in gastric carcinoma in relation to H. pylori infection, CIMP and clincopathologic variables. Materials and Methods: We investigated the promoter methylation Status of six genes (hMLH1, p16, p14, COX-2, MGMT, E-cadherin) and CIMP in 36 gastric carcinoma tissues as well as in nontumor tissues. CIMP status was investigated by examining the methylation status of MINT 1, 2, 12, 25 and 31. The methylation status of the promoter was examined by methylation-specific PCR (MSP) and H. pylori infection was examined by histological diagnosis after staining with Warthin-Starry silver. Results: Among the 36 gastric carcinoma tissues, DNA hypermethylation was detected in the following frequencies: 14 (38.9%) for p14, 13 (36.1%) for p16, 8 (22.2%) for MGMT, 10 (27.8%) for COX-2, 21 (58.3%) for E-cadherin, and 6 (16.7%) for hMLH1. The frequencies for MINT1 and MINT25 hypermethylation were significantly higher in tumor tissues than in nontumor tissues. 16 (44.4%) of the 36 gastric carcinoma tissues were positive for the CIMP CIMP-H tumors were associated with older patients and larger tumor size than CIMP-L tumors. We found a significant association between the presence of the CIMP and hypermethylation of p16. Hypermethylation of p16 and MINT2 were significantly different when compared by age. MINT1 gene methylation was significantly associated with H. pylori infection (P=0.004). Conclusion: Our results suggest that aberrant hypermethylation of multiple tumor related genes (hMLH1, p16, p14, COX-2, MGMT, E-cadherin, MINT1, 2, 12, 25, 31) occurs frequently in gastric carcinoma tissues. The hypermethylation of MINT1 was significantly higher in the tumor tissues and was associated with H. pylori infection.

  • PDF

Increased Hypermethylation of Glutathione S-Transferase P1, DNA-Binding Protein Inhibitor, Death Associated Protein Kinase and Paired Box Protein-5 Genes in Triple-Negative Breast Cancer Saudi Females

  • Hafez, Mohamed M.;Al-Shabanah, Othman A.;Al-Rejaie, Salim S.;Al-Harbi, Naif O.;Hassan, Zeinab K.;Alsheikh, Abdulmalik;Theyab, Abdurrahman I. Al;Aldelemy, Meshan L.;Sayed-Ahmed, Mohamed M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.541-549
    • /
    • 2015
  • Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer (BC) with higher metastatic rate and both local and systemic recurrence compared to non-TNBC. The generation of reactive oxygen species (ROS) secondary to oxidative stress is associated with DNA damage, chromosomal degradation and alterations of both hypermethylation and hypomethylation of DNA. This study concerns differential methylation of promoter regions in specific groups of genes in TNBC and non-TNBC Saudi females in an effort to understand whether epigenetic events might be involved in breast carcinogenesis, and whether they might be used as markers for Saudi BCs. Methylation of glutathione S-transferase P1 (GSTP1), T-cadherin (CDH13), Paired box protein 5 (PAX5), death associated protein kinase (DAPK), twist-related protein (TWIST), DNA-binding protein inhibitor (ID4), High In Normal-1 (HIN-1), cyclin-dependent kinase inhibitor 2A (p16), cyclin D2 and retinoic acid receptor-${\beta}$ ($RAR{\beta}1$) genes was analyzed by methylation specific polymerase chain reaction (MSP) in 200 archival formalin-fixed paraffin embedded BC tissues divided into 3 groups; benign breast tissues (20), TNBC (80) and non-TNBC (100). The relationships between methylation status, and clinical and pathological characteristics of patients and tumors were assessed. Higher frequencies of GSTP1, ID4, TWIST, DAPK, PAX5 and HIN-1 hypermethylation were found in TNBC than in non-TNBC. Hypermethylation of GSTP1, CDH13, ID4, DAPK, HIN-1 and PAX5 increased with tumor grade increasing. Other statistically significant correlations were identified with studied genes. Data from this study suggest that increased hypermethylation of GSTP1, ID4, TWIST, DAPK, PAX5 and HIN-1 genes in TNBC than in non-TNBC can act as useful biomarker for BCs in the Saudi population. The higher frequency of specific hypermethylated genes paralleling tumor grade, size and lymph node involvement suggests contributions to breast cancer initiation and progression.

Hypermethylation of the Ras Association Domain Family 1A (RASSF1A) Gene in Gallbladder Cancer

  • Kee, Se Kook;Lee, Ji Yun;Kim, Mi Jin;Lee, Su Man;Jung, Young Won;Kim, Young Joo;Park, Jae Yong;Bae, Han Ik;Hong, Hae Sook;Yun, Young Kook;Kim, Sang Geol;Kim, Dong Sun
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.364-371
    • /
    • 2007
  • The tumor suppressor gene Ras association domain family 1A (RASSF1A) is highly methylated in a wide range of human sporadic tumors. The current study investigated the hypermethylation of RASSF1A, the expression of RASSF1A protein, and the correlation between these and the clinicopathological features of gallbladder (GB) cancer in Korean patients. Formalin-fixed, paraffin-embedded tumors and non-neoplastic GB tissues (22 carcinomas, 8 adenomas, 26 normal epithelia) were collected from patients who had undergone surgical resection. The methylation status of two regions of the RASSF1A CpG island was determined by methylation-specific PCR (MSP), and the expression of RASSF1A protein was examined by immunohistochemistry using tissue microarrays. The K-RAS mutation was analyzed by direct sequencing. Methylation of the RASSF1A promoter (region 1) was detected in 22.7% (5/22) of carcinomas, 12.5% (1/8) of adenomas, and 0% (0/26) of normal gallbladder epithelia (P = 0.025). Methylation of the first exon (region 2) was found in 36.4% (8/22) of carcinomas, 25.0% (2/8) of adenomas, and 8.0% (2/26) of normal gallbladder epithelia (P = 0.038). K-RAS mutations were present in 4.5% (1/22) of carcinomas and 25% (2/8) of adenomas. RASSF1A methylaton was not associated with clinicopathological factors or K-ras mutation. Reduction or loss of RASSF1A expression was observed in most methylated adenocarcinomas. Three RASSF1A-expressing human biliary tract cancer cell lines examined contained unmethylated promoters and exons 1. These results suggest that downregulation of RASSF1A expression by DNA hypermethylation may be involved in GB carcinogenesis.

Human Immunodeficiency Virus-l Tat Positively Regulates the Human CD99 Gene via DNA Demethylation (Human Immunodeficiency Virus-1 Tat 단백에 의한 인간 CD99유전자의 조절기전에 대한 연구)

  • Lee, Eu-Gene;Kim, Ye-Ri;Lee, Mi-Kyung;Lee, Im-Soon
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.277-281
    • /
    • 2008
  • HIV affects many organ systems. Patients with HIV infection have substantially increased risk of developing various cancers, primarily by opportunistic infection with oncogenic viruses due to their immunocompromised status. However, extensive evidence also indicates that the viral protein, Tat itself, may playas a major factor in the development of AIDS-related neoplasms. The molecular mechanism underlying Tat's oncogenic activity may include deregulation of cellular genes. Therefore, in this study, we examined the effect of HIV-l Tat on CD99 as one of the target cellular genes, which is a well-known tumor marker in several cancers. By using established HeLa clones that are stably expressing Tat, we found that CD99 is upregulated by endogenous Tat, whereas STAT3 is down regulated. Upon the screening of genes differentially expressed between Tat-stable cells and the control cells by using the gene fishing technique, DEG, we detected 3 genes which expression is affected by the presence of Tat. Furthermore, the methylation specific PCR analysis of the stably Tat expressing cell lines revealed that the CD99 promoter is de methylated in the presence of Tat. Taken together, these results open a potential role of CD99 in AIDS-related oncogenesis via epigenetic regulation by HIV-1 Tat.

Aberrant Promoter Methylation of Death-Associated Protein Kinase in Serum DNA from Lung Cancer Patients (원발성 폐암 환자의 혈청에서 DAP kinase 유전자의 Methylation 양상)

  • Lee, Jun Hee;Lee, Jung Wook;Jung, Kyung Sik;Kim, Ki Uk;Lee, Tae Kun;Lee, Kyung Woo;Na, Min-Ah;Jeon, Doo Soo;Choi, Young Min;Kim, Yun Seong;Lee, Min Ki;Park, Soon Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.4
    • /
    • pp.378-387
    • /
    • 2003
  • Background : Promoter methylation of tumor suppressor genes is one of the key epigenetic changes in many human cancers. The aim of this study was to evaluate the promoter methylation status of the Death-associated protein(DAP) kinase gene, which played an important role in lung cancer, in the serum DNA of primary lung cancer patients. Methods : This study investigated the aberrant methylation of DAP kinase in the serum of 65 primary lung cancer patients by methylation-specific PCR (MSP). Results : Methylation in the serum was detected in 29 of 65(44.6%) for DAP kinase. There was no statistical association between methylation of DAP kinase and age, smoking history, histologic type, or stage. Methylation of DAP kinase was found more frequently in men (p=0.044). Conclusions : This study suggests that the aberrant methylation of the DAP kinase promoter is readily detectable in the serum DNA of lung cancer patients using MSP analysis.

Knockdown of GCF2/LRRFIP1 by RNAi Causes Cell Growth Inhibition and Increased Apoptosis in Human Hepatoma HepG2 Cells

  • Li, Jing-Ping;Cao, Nai-Xia;Jiang, Ri-Ting;He, Shao-Jian;Huang, Tian-Ming;Wu, Bo;Chen, De-Feng;Ma, Ping;Chen, Li;Zhou, Su-Fang;Xie, Xiao-Xun;Luo, Guo-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2753-2758
    • /
    • 2014
  • Background: GC-binding factor 2 (GCF2) is a transcriptional regulator that represses transcriptional activity of the epidermal growth factor receptor (EGFR) by binding to a specific GC-rich sequence in the EGFR gene promoter. In addition to this function, GCF2 has also been identified as a tumor-associated antigen and regarded as a potentially valuable serum biomarker for early human hepatocellular carcinoma (HCC) diagnosis. GCF2 is high expressed in most HCC tissues and cell lines including HepG2. This study focused on the influence of GCF2 on cell proliferation and apoptosis in HepG2 cells. Materials and Methods: GCF2 expression at both mRNA and protein levels in HepG2 cells was detected with reverse transcription (RT) PCR and Western blotting, respectively. RNA interference (RNAi) technology was used to knock down GCF2 mRNA and protein expression. Afterwards, cell viability was analyzed with a Cell Counting Kit-8 (CCK-8), and cell apoptosis and caspase 3 activity by flow cytometry and with a Caspase 3 Activity Kit, respectively. Results: Specific down-regulation of GCF2 expression caused cell growth inhibition, and increased apoptosis and caspase 3 activity in HepG2 cells. Conclusions: These primary results suggest that GCF2 may influence cell proliferation and apoptosis in HepG2 cells, and also provides a molecular basis for further investigation into the possible mechanism at proliferation and apoptosis in HCC.

Assessment of the Prognostic Value of Methylation Status and Expression Levels of FHIT, GSTP1 and p16 in Non-Small Cell Lung Cancer in Egyptian Patients

  • Haroun, Riham Abdel-Hamid;Zakhary, Nadia Iskandar;Mohamed, Mohamed Ragaa;Abdelrahman, Abdelrahman Mohamed;Kandil, Eman Ibrahim;Shalaby, Kamal Ali
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4281-4287
    • /
    • 2014
  • Background: Methylation of tumor suppressor genes has been investigated in all kinds of cancer. Tumor specific epigenetic alterations can be used as a molecular markers of malignancy, which can lead to better diagnosis, prognosis and therapy. Therefore, the aim of this study was to evaluate the association between gene hypermethylation and expression of fragile histidine triad (FHIT), glutathione S-transferase P1 (GSTP1) and p16 genes and various clinicopathologic characteristics in primary non-small cell lung carcinomas (NSCLC). Materials and Methods: The study included 28 primary non-small cell lung carcinomas, where an additional 28 tissue samples taken from apparently normal safety margin surrounding the tumors served as controls. Methylation-specific polymerase chain reaction (MSP) was performed to analyze the methylation status of FHIT, GSTP1 and p16 while their mRNA expression levels were measured using a real-time PCR assay with SYBR Green I. Results: The methylation frequencies of the genes tested in NSCLC specimens were 53.6% for FHIT, 25% for GSTP1, and 0% for p16, and the risk of FHIT hypermethylation increased among patients with NSCLC by 2.88, while the risk of GSTP1 hypermethylation increased by 2.33. Hypermethylation of FHIT gene showed a highly significant correlation with pathologic stage (p<0.01) and a significant correlation with smoking habit and FHIT mRNA expression level (p<0.05). In contrast, no correlation was observed between the methylation of GSTP1 or p16 and smoking habit or any other parameter investigated (p>0.05). Conclusions: Results of the present study suggest that methylation of FHIT is a useful biomarker of biologically aggressive disease in patients with NSCLC. FHIT methylation may play a role in lung cancer later metastatic stages while GSTP1 methylation may rather play a role in the early pathogenesis.

RUNX1-Survivin Axis Is a Novel Therapeutic Target for Malignant Rhabdoid Tumors

  • Masamitsu, Mikami;Tatsuya, Masuda;Takuya, Kanatani;Mina, Noura;Katsutsugu, Umeda;Hidefumi, Hiramatsu;Hirohito, Kubota;Tomoo, Daifu;Atsushi, Iwai;Etsuko Yamamoto, Hattori;Kana, Furuichi;Saho, Takasaki;Sunao, Tanaka;Yasuzumi, Matsui;Hidemasa, Matsuo;Masahiro, Hirata;Tatsuki R., Kataoka;Tatsutoshi, Nakahata;Yasumichi, Kuwahara;Tomoko, Iehara;Hajime, Hosoi;Yoichi, Imai;Junko, Takita;Hiroshi, Sugiyama;Souichi, Adachi;Yasuhiko, Kamikubo
    • Molecules and Cells
    • /
    • v.45 no.12
    • /
    • pp.886-895
    • /
    • 2022
  • Malignant rhabdoid tumor (MRT) is a highly aggressive pediatric malignancy with no effective therapy. Therefore, it is necessary to identify a target for the development of novel molecule-targeting therapeutic agents. In this study, we report the importance of the runt-related transcription factor 1 (RUNX1) and RUNX1-Baculoviral IAP (inhibitor of apoptosis) Repeat-Containing 5 (BIRC5/survivin) axis in the proliferation of MRT cells, as it can be used as an ideal target for anti-tumor strategies. The mechanism of this reaction can be explained by the interaction of RUNX1 with the RUNX1-binding DNA sequence located in the survivin promoter and its positive regulation. Specific knockdown of RUNX1 led to decreased expression of survivin, which subsequently suppressed the proliferation of MRT cells in vitro and in vivo. We also found that our novel RUNX inhibitor, Chb-M, which switches off RUNX1 using alkylating agent-conjugated pyrrole-imidazole polyamides designed to specifically bind to consensus RUNX-binding sequences (5'-TGTGGT-3'), inhibited survivin expression in vivo. Taken together, we identified a novel interaction between RUNX1 and survivin in MRT. Therefore the negative regulation of RUNX1 activity may be a novel strategy for MRT treatment.

Roles of Prostatic Acid Phosphatase in Prostate Cancer (Prostatic acid phosphatase의 전립선 암에서의 역할)

  • Kong, Hoon-Young;Lee, Hak-Jong;Byun, Jong-Hoe
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.893-900
    • /
    • 2011
  • Prostatic acid phosphatase (PAP) is one of the widely used biomarkers in the diagnosis of prostate cancer. It was initially identified in 1935 and is the most abundant phosphatase in the human prostate. PAP is a prostate-specific enzyme that is synthesized in prostate epithelial cells. It belongs to the acid phosphatase group that shows enzymatic activity in acidic conditions. PAP is abundant in prostatic fluid and is thought to have a role in fertilization and oligospermia. It also has a potential role in reducing chronic pain. But one of the most apparent functions of PAP is the dephosphorylation of macromolecules such as HER-2 and PI3P that are involved in the ERK1/2 and MAPK pathways, which in turn leads to inhibition of cell growth and tumorigenesis. Currently, clinical trials using PAP DNA vaccine are underway and FDA-approved immunotherapy using PAP is commercially available. Despite these clinically important aspects, molecular mechanisms underlying PAP regulation are not fully understood. The promoter region of PAP was reported to be regulated by NF-${\kappa}B$, TNF-${\alpha}$, IL-1, androgen and androgen receptors. Here, the features of PAP gene and protein structures together with the function, regulation and roles of PAP in prostate cancer are discussed.