• 제목/요약/키워드: Tumor therapy

Search Result 2,227, Processing Time 0.026 seconds

MethA Fibrosarcoma Cells Expressing Membrane-Bound Forms of IL-2 Enhance Antitumor Immunity

  • Sonn, Chung-Hee;Yoon, Hee-Ryung;Seong, In-Ock;Chang, Mi-Ra;Kim, Yong-Chan;Kang, Han-Chul;Suh, Seok-Cheol;Kim, Young-Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1919-1927
    • /
    • 2006
  • Tumor cells genetically engineered to secrete cytokines are effective in tumor therapy, but various unexpected side effects are observed, which may result from the bulk activation of various bystander cells. In this study, we tested tumor vaccines expressing various membrane-bound forms of IL-2 (mbIL-2) on MethA fibrosarcoma cells to focus antitumor immune responses to CTL. Chimeric forms of IL-2 with whole CD4, deletion forms of CD4, and TNF were expressed on the tumor cell surface, respectively. Tumor clones expressing mbIL-2 or secretory form of IL-2 were able to support the cell growth of CTLL-2, an IL-2-dependent T cell line, and the proliferation of spleen cells from 2C TCR transgenic mice that are responsive to the $p2Ca/L^d$ MHC class I complex. Expression of mbIL-2 on tumor cells reduced the tumorigenicity of tumor cells, and the mice that once rejected the live IL-2/TNF tumor clone acquired systemic immunity against wild-type MethA cells. The IL-2/TNF clone was inferior to other clones in tumor formation, and superior in the stimulation of the CD8+ T cell population in vitro. These results suggest that the IL-2/TNF clone is the best tumor vaccine, and may stimulate CD8+ T cells by direct priming. Expression of IL-2/TNF on tumor cells may serve as an effective gene therapy method to ameliorate the side effects encountered in the recombinant cytokine therapy and the conventional cytokine gene therapy using the secretory form of IL-2.

Optimising IL-2 for Cancer Immunotherapy

  • Jonathan Sprent;Onur Boyman
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.5.1-5.19
    • /
    • 2024
  • The key role of T cells in cancer immunotherapy is well established and is highlighted by the remarkable capacity of Ab-mediated checkpoint blockade to overcome T-cell exhaustion and amplify anti-tumor responses. However, total or partial tumor remission following checkpoint blockade is still limited to only a few types of tumors. Hence, concerted attempts are being made to devise new methods for improving tumor immunity. Currently, much attention is being focused on therapy with IL-2. This cytokine is a powerful growth factor for T cells and optimises their effector functions. When used at therapeutic doses for cancer treatment, however, IL-2 is highly toxic. Nevertheless, recent work has shown that modifying the structure or presentation of IL-2 can reduce toxicity and lead to effective anti-tumor responses in synergy with checkpoint blockade. Here, we review the complex interaction of IL-2 with T cells: first during normal homeostasis, then during responses to pathogens, and finally in anti-tumor responses.

Preliminary research on the development of boron neutron capture therapy drugs

  • Soyeon Kim;Ji-ung Yang;Kyo Chul Lee;Jung Young Kim;Yong Jin Lee;Ji-Ae Park
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.1
    • /
    • pp.3-10
    • /
    • 2021
  • For successful boron neutron caputre therapy, it is essential to develop a boron drug with a selective accumulation capacity for tumors. In particular, in order to apply boron neutron caputre therapy to brain tumors, drugs with good blood-brain barrier penetration are required. In this study, two low-molecular-weight boron compounds were introduced as brain tumor boron neutron caputre therapy drugs, and their physical and biological efficacy were evaluated. Among them, B2 showed good blood-brain barrier permeability and a high brain/blood ratio. From these results, it is expected that B2 can be used as a useful boron drug for boron neutron caputre therapy in brain tumors.

Pretargeting : A concept refraining traditional flaws in tumor targeting

  • Bhise, Abhinav;Yoo, Jeongsoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.1
    • /
    • pp.53-58
    • /
    • 2020
  • Pretargeting is a two-component strategy often used for tumor targeting to enhance the tumor-to-background ratio in cancer diagnosis as well as therapy. In the multistep strategy, the highly specific unlabeled monoclonal antibodies (mAbs) with the reactive site is allowed to get localized at tumor site first, and then small and fastclearing radiolabeled chelator with counter reactive site is administered which covalently attaches to mAbs via inverse electron demand Diels-Alder reaction (IEDDA). The catalyst-free IEDDA cycloaddition reaction between 1,2,4,5-tetrazines and strained alkene dienophiles aid with properties like selective bioconjugation, swift and high yielding bioorthogonal reactions are emergent in the development of radiopharmaceutical. Due to its fast pharmacokinetics, the in vivo formed radioimmunoconjugates can be imaged at earlier time points by short-lived radionuclides like 18F and 68Ga; it can also reduce radiation damage to the normal cells. Ultimately, this review elucidates the updated status of pretargeting based on antibodies and IEDDA for tumor diagnosis (PET and SPECT) and therapy.

Therapeutic Potency of N-(Phosphonacetyl)-L-Aspartic Acid in Liposome in Established Tumor Bearing Mice (진행된 암 동물모델에서의 리포좀 포집 PALA의 항암 치료 효과)

  • Kim, Jin-Seok;Heath, Timothy D.
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.2
    • /
    • pp.127-131
    • /
    • 2000
  • Previously, we have reported an antitumor efficacy of liposomal N-(phosphon-acetyl)-L-aspartic acid (or PALA) in C-26 tumor bearing Balb/c mice, where PALA in liposome was administered one day after tumor inoculation. In this report, we have investigated the therapeutic potency of liposomal formulation of PALA, which was administered eight days after tumor inoculation in the same C-26 tumor bearing mice. The C-26 murine colon tumor inoculated mice were randomized for the in vivo therapy and the survival was measured after a single intraperitoneal injection of the drug. When the therapy was initiated eight days after tumor inoculation, DSPC-PALA at 150 mg/kg resulted in a significant increase in median survival time (MST) of 56% over the control group which received MES/HEPES buffer alone. However, none of the free PALA and DSPG-PALA liposome doses caused a statistically significant increase in MST over control group at the 95% confidence level. At 750 mg/kg dose, free PALA caused a marginally significant improvement in MST by 34%, but both 375 mg/kg and 150 mg/kg doses of free PALA caused only a 2% and a 4% increase in MST, respectively. These results show that PALA in neutrally charged liposome can exhibit considerably greater potency than free PALA in established C-26 tumor bearing mice.

  • PDF

A Comprehensive Review of Diffusing Alpha-Emitters Radiation Therapy (DaRT): From Dosimetry to Its Biological Effectiveness

  • Seohan Kim;Wonmo Sung
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.3
    • /
    • pp.102-113
    • /
    • 2024
  • Diffusing alpha-emitters radiation therapy (DaRT) represents a groundbreaking development in cancer therapy, offering a solution to the limitations of conventional radiation therapy. By deploying 224Ra embedded seeds, DaRT achieves targeted delivery of high-dose alpha particles directly to tumor sites, showing considerable efficacy in tumor control and minimal damage to adjacent healthy tissues. This comprehensive review analyzes the published literature regarding mechanisms, seed production, dose calculation, measurement, and biological experiments related to DaRT. It includes in-depth discussions on mathematical models, Monte Carlo simulations for dose distribution, real-time in vivo dosimetry developments, and biological experiments both in vitro and in vivo. Clinical trial outcomes are also examined to evaluate the therapy's effectiveness in various cancer types. DaRT utilizes 224Ra-labeled seeds, using the decay chain of 224Ra to deliver alpha particles effectively within a tumor. Several asymptotic diffusion-leakage models were developed to calculate the alpha dose distribution of DaRT. In vivo dosimetry techniques have been developed for real-time monitoring. Biological experiments demonstrated the cytotoxic effects of DaRT across various cancer cells, with varying radiosensitivity. Additionally, the enhanced effects of combined therapy with chemotherapy and immunotherapy were suggested by many in vivo studies. Clinical trials have shown high complete response rate in squamous cell carcinoma, with minimal side effects, suggesting DaRT's feasibility and safety. DaRT emerges as a highly localized cancer treatment method with minimal side effects compared to traditional radiation therapy. It directly ablates tumors and potentially enhances immune responses, indicating a significant advance in cancer therapy. Future research and ongoing clinical trials will further elucidate its efficacy across different cancer types and in combination with other treatments.

Radiobiological mechanisms of stereotactic body radiation therapy and stereotactic radiation surgery

  • Kim, Mi-Sook;Kim, Wonwoo;Park, In Hwan;Kim, Hee Jong;Lee, Eunjin;Jung, Jae-Hoon;Cho, Lawrence Chinsoo;Song, Chang W.
    • Radiation Oncology Journal
    • /
    • v.33 no.4
    • /
    • pp.265-275
    • /
    • 2015
  • Despite the increasing use of stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS) in recent years, the biological base of these high-dose hypo-fractionated radiotherapy modalities has been elusive. Given that most human tumors contain radioresistant hypoxic tumor cells, the radiobiological principles for the conventional multiple-fractionated radiotherapy cannot account for the high efficacy of SBRT and SRS. Recent emerging evidence strongly indicates that SBRT and SRS not only directly kill tumor cells, but also destroy the tumor vascular beds, thereby deteriorating intratumor microenvironment leading to indirect tumor cell death. Furthermore, indications are that the massive release of tumor antigens from the tumor cells directly and indirectly killed by SBRT and SRS stimulate anti-tumor immunity, thereby suppressing recurrence and metastatic tumor growth. The reoxygenation, repair, repopulation, and redistribution, which are important components in the response of tumors to conventional fractionated radiotherapy, play relatively little role in SBRT and SRS. The linear-quadratic model, which accounts for only direct cell death has been suggested to overestimate the cell death by high dose per fraction irradiation. However, the model may in some clinical cases incidentally do not overestimate total cell death because high-dose irradiation causes additional cell death through indirect mechanisms. For the improvement of the efficacy of SBRT and SRS, further investigation is warranted to gain detailed insights into the mechanisms underlying the SBRT and SRS.

Malignant Mixed Tumor of Salivary Glands: A Clinical Study (악성 혼합종의 임상적 고찰)

  • Oh Kyung-Kyoon;Lee Guk-Haeng;Lee Jong-Ho;Shim Yoon-Sang
    • Korean Journal of Head & Neck Oncology
    • /
    • v.9 no.2
    • /
    • pp.227-233
    • /
    • 1993
  • For malignant neoplasms of salivary tissues. two of the better determinants of progosis are histologic classification and size of the neoplasm. Proper management of these tumors requires an accurate diagnosis by the pathologist and correct interpretation by the surgeon. Malignant mixed tumors account for between 3 and 13 precent of all cancers of the salivary glands and 2 percent of all tumors in these locations. The typical history of these tumors is that of slowly growing mass demonstrating a sudden increase in growth. The duration of onset of the tumor mass and the diagnosis of malignancy has been demonstrated to be 10 to 18 years. The risk of malignat transformation of a benign mixed tumor increases with the duration of the tumor. We analyzed retrospectively 13 cases of malignant mixed tumor who visited from Jan. 1985 to Dec. 1992. Mean age of the patients was 56.5 years. The origin of tumors were parotid gland 7 cases, submandibular gland 2 cases, and minor salivary gland 4 cases(palate 3 cases, tonsil pillar 1 case). According to the criteria of the AJCC on staging, stage I was 1 case, stage II 1 case, stage III 2 cases, and stage IV 9 cases. Histopathologically, carcinma ex pleomorphic adenoma were 12 cases and the true malignant mixed tumor was 1 case. The major treatment modalities were curative surgery, and radiation therapy followed. In conclusion, aggressive therapy of combined surgery and postoperative radiation therapy is required for these lesions, and patients with known or suspected benign tumor should be encouraged to undergo surgery early on in their disease to avoid malignant degeneration at a later dete.

  • PDF

The Effects of Blood-acting and Stasis-eliminating therapy on Anti-tumor and hematogenic metastasis (활혈화어법(活血化瘀法)의 항종양(抗腫瘍) 및 혈행(血行) 전이(轉移)에 대(對)한 고찰(考察))

  • Park, Mee-Ryong;Lee, Yeon-Weol;Cho, Jung-Hyo;Son, Chang-Kyu;Yoo, Hwa-Seung;Cho, Chong-Kwan
    • THE JOURNAL OF KOREAN ORIENTAL ONCOLOGY
    • /
    • v.9 no.1
    • /
    • pp.53-63
    • /
    • 2003
  • This study was analyzed the effects of blood-activating and stasis-eliminating herbs on anti-tumor and hematogenic metastasis. The metastasis and recurrence of tumor was the basis of yudok(yudu) on remained tumor cell and stagnation of blood, thermotoxo, phlegm, asthenia of healthy enerngy, stagnation of vital energy. Malignant tumor is caused by carcinogen and go through the progress of initiation, promotion, progression, it is closely related with Eohyul$(y{\grave{u}}xi {\breve{e}})$. Symptoms of blood stasis disease are purplish tongue, mass, fixed stabbing pain, ecchymosis of nail, hypodermic petechia, dermal thesaurismosis, melena, ecchymoma, disturbance of circulation. Effects on the therapy of activating blood circulation and congestion are anti-tumor, anti-coagulation, anti-hemolysis, anti-solution, anti-inflammation, anti-infection, control of blood circulations, control of connective tissue metabolism and control of immunity. They can directly kill the cancer cells entering the blood circulation, inhibit the formation of tumor embody and reduce the blood hyperviscosity. It is suggested that these herbs can be used to prevent and treat blood metastasis of cancer under the guidance of syndrome differentiation.

  • PDF

Synthesis and Evaluation of a Ligand Targeting the Somatostatin Receptor for Drug Delivery to Tumor Cell (암세포 내로의 약물 전달 증진 목적의 신규 소마토스타틴 수용체 타겟리간드 합성 및 평가)

  • Choi, SunJu;Hong, YoungDon;Lee, SoYoung;Jung, SungHee
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.193-198
    • /
    • 2015
  • Most of targeted therapies block the action of certain enzymes, proteins, or other molecules involved in the growth and spread of cancer cells to produce its cytotoxic effect. Either small molecule drugs or monoclonal antibodies are mostly used in targeted therapies. Unfortunately, targeted therapy has a certain degree of unwanted side effect like other cytotoxicity inducing chemotherapies. To overcome and to reduce unwanted side effects during a cancer therapy, recently radiopeptide therapies has got the worlds' attraction for the tumor targeting modalities due to its beneficial effect on less side effect compared to cytotoxic chemotherapies. Among radiopeptide therapies, $^{177}Lu$-DOTATATE is a major modality as an effective one invented so far in treating neuroendocrine tumor (NET) and it has been in clinical trials at least one decade. Although it does have rather effective therapeutic effect on NET, it has less effective in rather large solid tumor. There are many ways to improve or increase therapeutic effect of radiopeptide are a finding the potent small molecules to target the tumor site selectively, or a labeling with radioisotope of emitting high energy, or an improving its biological half-life by introducing different moieties to increase lipophilicity. Present study was focus to increase a biological half-life of radio somatostatin which will target the somatostatin receptor by altering the bifunctional chelator (BFCA) by introducing lipophilic moiety to the somatostatin, which would make the labeled peptide stay longer in the tumor site and thus it can intensify the therapeutic effect on tumor cell itself and around tissues.