• Title/Summary/Keyword: Tumor necrosis factor-$\alpha$ ($TNF-{\alpha}$)

Search Result 1,365, Processing Time 0.029 seconds

Study on Relationship between Tumor Necrosis $Factor-\alpha$ Gene Polymorphism and Obese Patients

  • Kang Byung-Ku;Lee Si-Hyeong;Shin Jo-Young
    • The Journal of Korean Medicine
    • /
    • v.26 no.1 s.61
    • /
    • pp.85-92
    • /
    • 2005
  • Objective: A number of candidate genes have been in implicated in the pathogenesis of obesity in humans. Tumor necrosis factor-alpha $(TNF-{\alpha})$ is expressed primarily in adipocytes, and elevated levels of this cytokine have been linked to obesity and insulin resistance. Recently, the A allele of a polymorphism at position 308 in the promoter region of $TNF-{\alpha}$ (G-308A) has been shown to increase transcription of the gene in adipocytes. Therefore, we designed this study to test whether obese and non-obese subjects differ in $TNF-{\alpha}$ genotype distribution, and how the genotypes affect anthropometric parameters, including degrees of body mass index (BMI). Methods : The study included 153 obese but otherwise healthy women ($BMI{\geq}kg/m^2$, range 25-54.7, age range 15-40 years) and 82 non-obese healthy women ($BMI, age range 15-40 years). Total fat mass and percent body fat were determined by dual-energy X-ray absorptiometry. Genomic DNA was extracted and used for Ncol restriction fragment length polymorphism (RFLP) based genotyping of $TNF-{\alpha}$. Results: No differences were observed for allelic and genotype frequencies between the obese ($BMI{\geq}25$) and non-obese women. Also, no association of TNF-(l polymorphism was observed with body mass index (BMI) for genotype in obese women. In addition, age, pertent body fat, BMI, and cholesterol levels did not differ by $TNF-{\alpha}$ genotype. However, waist-to­hip ratio (WHR) was significantly lower in subjects with $TNF-{\alpha}$ GA or AA genotype (0.94 0.07 vs. 0.920.03, P<0.005). Conclusion: These results suggest that $TNF-{\alpha}$ promoter polymorphism at position-308 is not a significant factor for BMI, but affects the WHR in obese healthy women from Koreans.

  • PDF

The Effects of Chelidonium majus on NO and $TNF-{\alpha}$ Production in Macrophages (백굴채가 대식세포의 NO 및 $TNF-{\alpha}$ 생성에 미치는 영향)

  • 김홍준;문석재;김동웅;문구;원경숙;윤준철;김유경;원진희
    • The Journal of Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.138-147
    • /
    • 2003
  • Objectives : In this study, we investigated the mechanism by which Chelidonium majus (CM) regulates nitric oxide (NO) production. Methods : Using mouse peritoneal macrophages, the mechanism by which CM regulates NO or tumor necrosis $factor-{\alpha}(TNF-{\alpha})$ production was examined. NO release was measured by the Griess method. $TNF-{\alpha}$ production was measured by the ELISA method. The protein extracts were prepared and samples were analyzed for the inducible NOS(iNOS) expression and nuclear factor kappa $B(NF-{\kappa}B)$ activation by Western blotting. Results : When CM was used in combination with recombinant $interferon-{\gamma}{\;}(rIFN-{\gamma})$, there was a marked cooperative induction of NO production. CM had an effect on NO production by itself. The expression of the iNOS gene was increased in $rIFN-{\gamma}$ plus CM-stimulated peritoneal macrophages and almost completely inhibited by pre-treatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of $NF-{\kappa}B$. The $NF-{\kappa}B$ activation was increased in rIFN-{\gamma} plus CM-induced peritoneal macrophages. The increased production of NO from $rIFN-{\gamma}$ plus CM-stimulated peritoneal rnacrophages was decreased by the treatment with $N^{G}-monomethyl-{_L}-arginine{\;}(N^{G}MMA){\;}N^{\alpha}-Tosyl-Phe$ chloromethyl ketone (TPCK) , and was almost completely inhibited by pre-treatment with PDTC. Furthermore, treatment with CM alone or rIFN-{\gamma} plus CM in peritoneal macrophages caused a significant increase in $TNF-{\alpha}$ production. PDTC decreased CM-induced $TNF-{\alpha}$ production significantly. After CM treatment in HT-29 or AGS cells, cell viability decreased. Conclusions : These findings demonstrate that CM increases the production of NO and $TNF-{\alpha}{\;}by{\;}rIFN-{\gamma}-primed$ macrophages and suggest that NF-B plays a critical role in mediating these effects of CM.

  • PDF

Serum interleukin-1beta and tumor necrosis factor-alpha in febrile seizures: is there a link?

  • Mahyar, Abolfazl;Ayazi, Parviz;Orangpour, Reza;Daneshi-Kohan, Mohammad Mahdi;Sarokhani, Mohammad Reza;Javadi, Amir;Habibi, Morteza;Talebi-Bakhshayesh, Mousa
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.10
    • /
    • pp.440-444
    • /
    • 2014
  • Purpose: Febrile seizures are induced by fever and are the most common type of seizures in children. Although numerous studies have been performed on febrile seizures, their pathophysiology remains unclear. Recent studies have shown that cytokines may play a role in the pathogenesis of febrile seizures. The present study was conducted to identify potential links between serum interleukin-1beta (IL-$1{\beta}$), tumor necrosis factor-alpha (TNF-${\alpha}$), and febrile seizures. Methods: Ninety-two patients with simple or complex febrile seizures (46 patients per seizure type), and 46 controls with comparable age, sex, and severity of temperature were enrolled. Results: The median concentrations of serum IL-$1{\beta}$ in the simple, complex febrile seizure, and control groups were 0.05, 0.1, and 0.67 pg/mL, respectively (P=0.001). Moreover, the median concentrations of TNF-${\alpha}$ in the simple, complex febrile seizure, and control groups were 2.5, 1, and 61.5 pg/mL, respectively (P=0.001). Furthermore, there were significant differences between the case groups in serum IL-$1{\beta}$ and TNF-${\alpha}$ levels (P<0.05). Conclusion: Unlike previous studies, our study does not support the hypothesis that increased IL-$1{\beta}$ and TNF-${\alpha}$ production is involved in the pathogenesis of febrile seizures.

Gram-negative Septicemia after Infliximab Treatment in an Infant with Refractory Kawasaki Disease (불응성 가와사키병 환아에서 infliximab 사용 후 발생한 패혈증)

  • Lee, Jin Hwan;Yoon, Jung Min;Lim, Jae Woo;Ko, Kyong Og;Cheon, Eun Jung
    • Pediatric Infection and Vaccine
    • /
    • v.21 no.3
    • /
    • pp.225-230
    • /
    • 2014
  • Kawasaki disease (KD) is an immune-mediated disease which is a leading cause of acquired cardiovascular disease in developed country. Recently, tumor necrosis factor-alpha (TNF-alpha) blocker, infliximab has been considered a promising option for patients with refractory KD. Although chronic use of a TNF-alpha blocker could increase risk of opportunistic infections, a few studies have documented that use of infliximab was safe without serious adverse effects in patients with KD. We observed serious bacterial infection after infliximab treatment in an infant with refractory KD. Our patient was a 5-month-old male infant diagnosed with KD who did not respond to repeated doses of intravenous immunoglobulin. We effectively treated him with a single infusion of infliximab (5 mg/kg), but gram-negative (Acinetobacter lwoffii) septicemia developed after infliximab infusion. Therefore, we report a case of serious septicemia after treatment with infliximab, and suggest considering the risk of severe infection when deciding whether to prescribe infliximab to an infant with refractory KD.

Inhibitory effect of Hwang lyun tang water extract on inflammatory mediators

  • Chae, Hee-Sung;Kang, Ok-Hwa;Kwon, Dong-Yeul
    • Journal of Evidence-Based Herbal Medicine
    • /
    • v.1 no.1
    • /
    • pp.7-11
    • /
    • 2008
  • The purpose of this study was to investigate the anti-inflammatory effects of extract from Hwang lyun tang (HLT) on the THP-1 cell and HMC-1 cell. To evaluate of anti-inflammatory of HLT, we examined cytokines production in lipopolysacchride (LPS)-induced THP-1 cell and A23187, PMA-induced HMC-1 cell. Extract of HLT inhibit LPS-induced interleukin (IL)-8 production in human monocyte THP-1 cells. Extract of HLT inhibit A23187, PMA-induced IL-8, tumor necrosis factor-$\alpha$ (INF-$\alpha$) production in HMC-1 cells. HLT down-regulated LPS-induced IL-8 production and A23187, PMA-induced IL-8, TNF-$\alpha$ production, which may be provide a clinical basis for anti-inflammatory properities of HLT.

  • PDF

Effect of Jak-Yak Tang water extract on expression of cytokin and chemokine

  • Oh, You-Chang;Kang, Ok-Hwa;Kwon, Dong-Yeul
    • Journal of Evidence-Based Herbal Medicine
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Objectives : The purpose of this study was to investigate the anti-inflammatory effects of extract from Jak-Yak Tang (JYT) on the THP-1 cell and HMC-1 cell. Method : To evaluate of anti-inflammatory of JYT, we examined cytokines production in lipopolysacchride (LPS)-induced THP-1 cell and A23187, PMA-induced HMC-1 cell. Result : Extract of JYT inhibit LPS-induced interleukin (IL)-8 production in human monocyte THP-1 cells. Extract of JYT inhibit A23187, PMA-induced IL-8, tumor necrosis factor-$\alpha$ (INF-$\alpha$) production in HMC-1 cells. Conclusion : NT down-regulated LPS-induced IL-8 production and A23187, PMA-induced IL-8, TNF-$\alpha$ production, which may be provide a clinical basis for anti-inflammatory properities of JYT.

  • PDF

Tumor Necrosis Factor ${\alpha}$ up-regulates the Expression of beta2 Adrenergic Receptor via NF-${\kappa}B$-dependent Pathway in Osteoblasts

  • Baek, Kyunghwa;Kang, Jiho;Hwang, Hyo Rin;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.38 no.3
    • /
    • pp.121-126
    • /
    • 2013
  • Tumor necrosis factor alpha ($TNF{\alpha}$) is a multifunctional inflammatory cytokine that regulates various cellular and biological processes. Increased levels of $TNF{\alpha}$ have been implicated in a number of human diseases including diabetes and arthritis. Sympathetic nervous system stimulation via the beta2-adrenergic receptor (${\beta}2AR$) in osteoblasts suppresses osteogenic activity. We previously reported that $TNF{\alpha}$ upregulates ${\beta}2AR$ expression in murine osteoblastic cells and that this modulation is associated with $TNF{\alpha}$ inhibition of osteoblast differentiation. In our present study, we explored whether $TNF{\alpha}$ induces ${\beta}2AR$ expression in human osteoblasts and then identified the downstream signaling pathway. Our results indicated that ${\beta}2AR$ expression was increased in Saos-2 and C2C12 cells by $TNF{\alpha}$ treatment, and that this increase was blocked by the inhibition of NF-${\kappa}B$ activation. Chromatin immunoprecipitation and luciferase reporter assay results indicated that NF-${\kappa}B$ directly binds to its cognate elements on the ${\beta}2AR$ promoter and thereby stimulates ${\beta}2AR$ expression. These findings suggest that the activation of $TNF{\alpha}$ signaling in osteoblastic cells leads to an upregulation of ${\beta}2AR$ and also that $TNF{\alpha}$ induces ${\beta}2AR$ expression in an NF-${\kappa}B$-dependent manner.

Effects of Curcumin and Genistein on Phorbol Ester or Tumor Necrosis Factor-${\alpha}$-Induced Mucin Production from Human Airway Epithelial Cells

  • Lee, Su-Yel;Lee, Hyun-Jae;Lee, Jae-Woo;Jeon, Byeong-Kyou;Kim, Ju-Ock;Lee, Choong-Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.3
    • /
    • pp.218-223
    • /
    • 2011
  • Background: We investigated whether curcumin and genistein affect the MUC5AC mucin production from human airway epithelial cells that is induced by phorbol 12-myristate 13-acetate (PMA) or tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$). Methods: Confluent NCI-H292 cells were pretreated with each agent for 30 min and then stimulated with PMA or TNF-${\alpha}$ for 24 hours. MUC5AC mucin production was measured by an ELISA. Results: (1) Curcumin dose-dependently inhibited the production of MUC5AC mucin that was induced by PMA or TNF-${\alpha}$; (2) Genistein inhibited PMA-induced MUC5AC mucin production. However, it did not decrease TNF-${\alpha}$-induced MUC5AC mucin production. Conclusion: These results suggest that curcumin and genistein inhibit the production of airway mucin induced by PMA.

Role of Tumor Necrosis Factor-${\alpha}$ Promoter Polymorphism and Insulin Resistance in the Development of Non-alcoholic Fatty Liver Disease in Obese Children

  • Yang, Hye-Ran;Ko, Jae-Sung;Seo, Jeong-Kee
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.15 no.1
    • /
    • pp.44-51
    • /
    • 2012
  • Purpose: Tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) polymorphism has been suggested to play an important role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) in obese adults, and known to be a mediator of insulin resistance. In this study, we evaluated the role of TNF-${\alpha}$ promoter polymorphisms and insulin resistance in the development of NAFLD in obese children. Methods: A total of 111 obese children (M:F=74:37; mean age, $11.1{\pm}2.0$ yrs) were included. The children were divided into 3 groups: controls (group I, n=61), children with simple steatosis (group II, n=17), and children with non-alcoholic steatohepatitis (group III, n=33). Serum TNF-${\alpha}$ levels, homeostasis model assessment of insulin resistance (HOMA-IR), and TNF-${\alpha}$ -308 and -238 polymorphisms were evaluated. Results: There were no differences in TNF-${\alpha}$ polymorphism at the -308 or the -238 loci between group I and group II + III ($p$=0.134 and $p$=0.133). The medians of HOMA-IR were significantly different between group I and group II + III ($p$=0.001), with significant difference between group II and group III ($p$=0.007). No difference was observed in the HOMA-IR among the genotypes at the -308 locus ($p$=0.061) or the -238 locus ($p$=0.207) in obese children. Conclusion: TNF-${\alpha}$ promoter polymorphisms at the -308 and -238 loci were not significantly associated with the development of NAFLD in children; nevertheless, insulin resistance remains a likely essential factor in the pathogenesis of NAFLD in obese children, especially in the progression to NASH.

Cilostazol Decreases Ethanol-Mediated TNFalpha Expression in RAW264.7 Murine Macrophage and in Liver from Binge Drinking Mice

  • Lee, Youn-Ju;Eun, Jong-Ryeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.2
    • /
    • pp.131-138
    • /
    • 2012
  • Alcoholic hepatitis is a leading cause of liver failure in which the increased production of tumor necrosis factor ${\alpha}$ (TNF${\alpha}$) plays a critical role in progression of alcoholic liver disease. In the present study, we investigated the effects of cilostazol, a selective inhibitor of type III phosphodiesterase on ethanol-mediated TNF${\alpha}$ production in vitro and $in$ $vivo$, and the effect of cilostazol was compared with that of pentoxifylline, which is currently used in clinical trial. RAW264.7 murine macrophages were pretreated with ethanol in the presence or absence of cilostazol then, stimulated with lipopolysacchride (LPS). Cilostazol significantly suppressed the level of LPS-stimulated TNF${\alpha}$ mRNA and protein with a similar degree to that by pentoxifylline. Cilostazol increased the basal AMP- activated protein kinase (AMPK) activity as well as normalized the decreased AMPK by LPS. AICAR, an AMPK activator and db-cAMP also significantly decreased TNF${\alpha}$ production in RAW264.7 cells, but cilostazol did not affect the levels of intracellular cAMP and reactive oxygen species (ROS) production. The $in$ $vivo$ effect of cilostazol was examined using ethanol binge drinking (6 g/kg) mice model. TNF${\alpha}$ mRNA and protein decreased in liver from ethanol gavaged mice compared to that from control mice. Pretreatment of mice with cilostazol or pentoxifylline further reduced the TNF${\alpha}$ production in liver. These results demonstrated that cilostazol effectively decrease the ethanol-mediated TNF${\alpha}$ production both in murine macrophage and in liver from binge drinking mice and AMPK may be responsible for the inhibition of TNF${\alpha}$ production by cilostazol.