• Title/Summary/Keyword: Tumor necrosis factor receptor

Search Result 291, Processing Time 0.029 seconds

Inhibitory effects of lysozyme on endothelial protein C 1receptor shedding in vitro and in vivo

  • Ku, Sae-Kwang;Yoon, Eun-Kyung;Lee, Hyun Gyu;Han, Min-Su;Lee, Taeho;Bae, Jong-Sup
    • BMB Reports
    • /
    • v.48 no.11
    • /
    • pp.624-629
    • /
    • 2015
  • Lysozyme protects us from the ever-present danger of bacterial infection and binds to bacterial lipopolysaccharide (LPS) with high affinity. Beyond its role in the activation of protein C, the endothelial cell protein C receptor (EPCR) plays an important role in the cytoprotective pathway. EPCR can be shed from the cell surface, which is mediated by tumor necrosis factor-α converting enzyme (TACE). However, little is known about the effects of lysozyme on EPCR shedding. We investigated this issue by monitoring the effects of lysozyme on phorbol-12-myristate 13-acetate (PMA)-, tumor necrosis factor (TNF)-α-, interleukin (IL)-1βand cecal ligation and puncture (CLP)-mediated EPCR shedding and underlying mechanism. Data demonstrate that lysozyme induced potent inhibition of PMA-, TNF-α-, IL-1β-, and CLP-induced EPCR shedding. Lysozyme also inhibited the expression and activity of PMA-induced TACE in endothelial cells. These results demonstrate the potential of lysozyme as an anti-EPCR shedding reagent against PMA-mediated and CLP-mediated EPCR shedding.

Effects of Sulraphane on Osteoclastogenesis in RAW 264.7 (RAW 264.7 세포에서 sulforaphane의 파골세포형성 저해효과)

  • Hwang, Joon-Ho;Yi, Mi-Ran;Kang, Chang-Hee;Bu, Hee-Jung
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.151-160
    • /
    • 2016
  • Inflammatory cytokines play a major role in osteoclastogenesis, leading to the bone resorption that is frequently associated with osteoporosis. Sulforaphane, isolated from the Broccoli(Brassica oleracea var. italia) florets, inhibits the production of inflamatory cytokine. In the present study, we determined inhibitory effect of sulforaphane on Receptor activator of nuclear factor κB ligand(RANKL)-induced osteoclast formation. Sulforaphane inhibited the expression of osteoclast marker genes, such as tartrate-resistant acid phosphatase(TRAP), cathepsin K, matrix metalloproteinase 9(MMP-9), and calcitonin receptor in RANKL-induced RAW 264.7 macrophage. Also, sluforaphane inhibited the expression of osteoclast protein, such as TRAP, MMP-9, tumor necrosis factor receptor-associated factor 6(TRAF6) and transcription factor nuclease factor of activated T cells(NFAT)c1. Sulforaphane inhibited RANKL-induced activiation of nuclear factor kappaB(NF-kappaB) by suppression RANKL-mediated NF-kappaB transcriptional acitivation. We are confirmed that sulforaphane inhibits not only transcriptional activity of NF-kappaB but also expressions of the osteoclastogenesis factors(TRAP, cathepsin K, MMP-9, calcitonin, TRAF6) and trranscription factor NFATc1.

Apoptotic Killing of Breast Cancer Cells by IgYs Produced Against a Small 21 Aminoacid Epitope of the Human TRAIL-2 Receptor

  • Amirijavid, Shaghayegh;Entezari, Maliheh;Movafagh, Abolfazl;Hashemi, Mehrdad;Mosavi-Jarahi, Alireza;Dehghani, Hossein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.293-297
    • /
    • 2016
  • TRAIL, tumor necrosis factor (TNF)-related apoptosis-inducing ligand belongs to one of important cytokine superfamilIES, tumor necrosis factor ($TNF{\alpha}$). TRAIL-2 receptor agonists activate several cell signaling pathways in cells in different manners and could lead to apoptosis or necrosis. Agonistic egg yolk antibodies like IgY which have been developed in a selective manner could activate TRAIL death receptors such as TRAIL-2 (DR5) and thus apoptosis signaling. We here investigated induction of apoptosis in human breast cancer cells (MCF7 cell line) by an IgY produced against an 21 aminoacid epitope of the human TRAIL-2 receptor. As the first step a small peptide of 21 aminoacids choosen from the extracellular domain of DR5 protein was produced with a peptide synthesizer. After control assays and confirmation of the correct amino acid sequence, it was injected to hens immunized to achieve high affinity IgYs. At the next step, the produced IgYs were extracted and examined for specificity against DR5 protein by ELISA assay. Subsequently, the anticancer effect of such IgYs was determined by MTT assay in the MCF7 human breast cancer cell line. The produced peptides successfully immunized hens and the produced antibodies which accumulated in egg yolk specifically recognized the DR5 protein. IgYs exerted significant toxicity and killed MCF7 cells as shown by MTT assay.

Evidence of hydrolyzed traditional Korean red ginseng by malted barley on activation of receptor interacting proteins 2 and IkappaB kinase-beta in mouse peritoneal macrophages

  • Rim, Hong-Kun;Kim, Kyu-Yeob;Moon, Phil-Dong
    • CELLMED
    • /
    • v.2 no.3
    • /
    • pp.27.1-27.6
    • /
    • 2012
  • Red ginseng, which has a variety of biological and pharmacological activities including antioxidant, anti-inflammatory, antimutagenic and anticarcinogenic effects, has been used for thousands of years as a general tonic in traditional oriental medicine. Here, we tested the immune regulatory activities of hydrolyzed red ginseng by malted barley (HRG) on the expressions of receptor interacting proteins (Rip) 2 and $I{\kappa}B$ kinase-beta (IKK-${\beta}$) in mouse peritoneal macrophages. We show that HRG increased the activations of Rip 2 and IKK-${\beta}$ for the first time. When HRG was used in combination with recombinant interferon-${\gamma}$ (rIFN-${\gamma}$), there was a marked cooperative induction of nitric oxide (NO) production. The increased expression of inducible NO synthase from rIFN-${\gamma}$ plus HRG-stimulated cells was almost completely inhibited by pre-treatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of nuclear factor-${\kappa}B$ (NF-${\kappa}B$). In addition, the treatment of peritoneal macrophages with rIFN-${\gamma}$ plus HRG caused significant increases in tumor necrosis factor (TNF)-${\alpha}$ mRNA expression and production. Because NO and TNF-${\alpha}$ play an important role in the immune function and host defense, HRG treatment can modulate several aspects of the host defense mechanisms as a result of the stimulations of the inducible nitric oxide synthase and NF-${\kappa}B$. In conclusion, our findings demonstrate that HRG increases the productions of NO and TNF-${\alpha}$ from rIFN-${\gamma}$-primed macrophages and suggest that Rip2/IKK-${\beta}$ plays a critical role in mediating these immune regulatory effects of HRG.

Tumor Necrosis Factor Receptor (TNFR)-associated factor 2 (TRAF2) is not Involved in GM-CSF mRNA Induction and TNF-Mediated Cytotoxicity

  • Kim, Jung-Hyun;Cha, Myung-Hoon;Lee, Tae-Kon;Seung, Hyo-Jun;Park, Choon-Sik;Chung, Il-Yup
    • Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.111-116
    • /
    • 1999
  • Tumor necrosis factor receptor (TNFR)-associated factor 2 (TRAF2) is known to act as a signal transducer that connects TNFR2 to its downstream effector functions such as proliferation of thymocytes, regulation of gene expression, and cell death. TRAF2 consists of largely two domains, the N-terminal half that contains a signal-emanating region and the C-terminal half that is responsible for binding to the intracellular region of TNFR2. In this study, we examined the possible roles of TRAF2 in granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression and cell death. A truncated mutant of TRAF2 ( 2-263) that contains only a C-terminal half was generated, and transiently transfected to the A549 cell, a human lung cancer cell line, and L929 cell, a murine TNF-sensitive cell line. GM-CSF mRNA was induced in untransfected A540 cells both in dose- and time-dependent manner upon the exposure of TNF. However, neither the full length TRAF2 nor the mutant altered GM-CSF mRNA production regardless of the presence or absence of TNF. Furthermore, neither TRAF2 versions significantly changed the cytotoxic effect of TNF on L929 cells. These data suggest that TRAF2 may not be involved in the signal transduction pathway for GM-CSF gene induction and cell death mediated by TNF.

  • PDF

Carnosic acid inhibits TLR4-MyD88 signaling pathway in LPS-stimulated 3T3-L1 adipocytes

  • Park, Mi-Young;Mun, Seong Taek
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.516-520
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Carnosic acid (CA), found in rosemary (Rosemarinus officinalis) leaves, is known to exhibit anti-obesity and anti-inflammatory activities. However, whether its anti-inflammatory potency can contribute to the amelioration of obesity has not been elucidated. The aim of the current study was to investigate the effect of CA on Toll-like receptor 4 (TLR4) pathways in the presence of lipopolysaccharide (LPS) in 3T3-L1 adipocytes. MATERIALS/METHODS: 3T3-L1 adipocytes were treated with CA ($0-20{\mu}M$) for 1 h, followed by treatment with LPS for 30 min; mRNA expression of adipokines and protein expression of TLR4-related molecules were then measured. RESULTS: LPS-stimulated 3T3-L1 adipocytes showed elevated mRNA expression of tumor necrosis factor (TNF)-${\alpha}$, interleukin-6, and monocyte chemoattractant protein-1, and CA significantly inhibited the expression of these adipokine genes. LPS-induced up regulation of TLR4, myeloid differentiation factor 88, TNF receptor-associated factor 6, and nuclear factor-${\kappa}B$, as well as phosphorylated extracellular receptor-activated kinase were also suppressed by pre-treatment of 3T3-L1 adipocytes with CA. CONCLUSIONS: Results of this study suggest that CA directly inhibits TLR4-MyD88-dependent signaling pathways and decreases the inflammatory response in adipocytes.

Effect of Germinated Brown Rice on LPS-Induced Inflammation in Adipocytes (발아현미가 LPS로 유도된 지방세포의 염증반응에 미치는 영향)

  • Park, Mi-Young
    • Journal of the Korean Society of Food Culture
    • /
    • v.33 no.4
    • /
    • pp.337-344
    • /
    • 2018
  • Germinated brown rice (GBR, Orysa sartiva L.) has been reported to have anti-obesity and anti-inflammatory effects. However, the mechanisms underlying these effects in adipocytes are not fully understood. Therefore, this study was conducted to explore the anti-inflammatory mechanisms of GBR on lipopolysaccharide (LPS)-stimulated 3T3-L1 adipocytes. 3T3-L1 adipocytes were pretreated with GBR extracts (0-20 mg/mL) 1 h before LPS stimulation. The mRNA expression of adipokines and Toll-like receptor 4 (TLR4) were measured by RT-PCR. The protein expressions of TLR4-related molecules were detected by western blotting and nuclear factor-${\kappa}B$ ($NF-{\kappa}B$) activation was measured. Our results showed that GBR extract dose-dependently inhibited mRNA expression of LPS-induced tumor necrosis factor-${\alpha}$ ($TNF-{\alpha}$), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). GBR extract was found to inhibit LPS-induced mRNA expression of TLR4 and protein expression of both myeloid differentiation factor 88 (MyD88) and TNF receptor-associated factor 6 (TRAF6). Furthermore, GBR extract significantly inhibited extracellular receptor-activated kinase (ERK) phosphorylation and $NF-{\kappa}B$ activation. These results suggest that GBR extract has the anti-inflammatory effects on LPS-induced inflammation via inhibition of TLR4 signaling, includingthe ERK and $NF-{\kappa}B$ signaling pathways, in adipocytes.

Tumor Necrosis Factor ${\alpha}$ up-regulates the Expression of beta2 Adrenergic Receptor via NF-${\kappa}B$-dependent Pathway in Osteoblasts

  • Baek, Kyunghwa;Kang, Jiho;Hwang, Hyo Rin;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.38 no.3
    • /
    • pp.121-126
    • /
    • 2013
  • Tumor necrosis factor alpha ($TNF{\alpha}$) is a multifunctional inflammatory cytokine that regulates various cellular and biological processes. Increased levels of $TNF{\alpha}$ have been implicated in a number of human diseases including diabetes and arthritis. Sympathetic nervous system stimulation via the beta2-adrenergic receptor (${\beta}2AR$) in osteoblasts suppresses osteogenic activity. We previously reported that $TNF{\alpha}$ upregulates ${\beta}2AR$ expression in murine osteoblastic cells and that this modulation is associated with $TNF{\alpha}$ inhibition of osteoblast differentiation. In our present study, we explored whether $TNF{\alpha}$ induces ${\beta}2AR$ expression in human osteoblasts and then identified the downstream signaling pathway. Our results indicated that ${\beta}2AR$ expression was increased in Saos-2 and C2C12 cells by $TNF{\alpha}$ treatment, and that this increase was blocked by the inhibition of NF-${\kappa}B$ activation. Chromatin immunoprecipitation and luciferase reporter assay results indicated that NF-${\kappa}B$ directly binds to its cognate elements on the ${\beta}2AR$ promoter and thereby stimulates ${\beta}2AR$ expression. These findings suggest that the activation of $TNF{\alpha}$ signaling in osteoblastic cells leads to an upregulation of ${\beta}2AR$ and also that $TNF{\alpha}$ induces ${\beta}2AR$ expression in an NF-${\kappa}B$-dependent manner.

Expression of the genes for peroxisome proliferator-activated receptor-γ, cyclooxygenase-2, and proinflammatory cytokines in granulosa cells from women with polycystic ovary syndrome

  • Lee, Joong Yeup;Tae, Jin Cheol;Kim, Chung Hyon;Hwang, Doyeong;Kim, Ki Chul;Suh, Chang Suk;Kim, Seok Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.44 no.3
    • /
    • pp.146-151
    • /
    • 2017
  • Objective: To identify differences in the expression of the genes for peroxisome proliferator-activated receptor $(PPAR)-{\gamma}$, cyclooxygenase (COX)-2, and the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor $(TNF)-{\alpha}$ in granulosa cells (GCs) from polycystic ovary syndrome (PCOS) patients and controls undergoing controlled ovarian stimulation. Methods: Nine patients with PCOS and six controls were enrolled in this study. On the day of oocyte retrieval, GCs were collected from pooled follicular fluid. Total mRNA was extracted from GCs. Reverse transcription was performed and gene expression levels were quantified by realtime quantitative polymerase chain reaction. Results: There were no significant differences in age, body mass index, and total gonadotropin dose, except for the ratio of luteinizing hormone to follicle-stimulating hormone between the PCOS and control groups. $PPAR-{\gamma}$ and COX-2 mRNA was significantly downregulated in the GCs of PCOS women compared with controls (p= 0.034 and p= 0.018, respectively), but the expression of IL-6 and $TNF-{\alpha}$ mRNA did not show significant differences. No significant correlation was detected between the expression of these mRNA sequences and clinical characteristics, including the number of retrieved oocytes, oocyte maturity, cleavage, or the good embryo rate. Positive correlations were found among the $PPAR-{\gamma}$, COX-2, IL-6, and $TNF-{\alpha}$ mRNA levels. Conclusion: Our data may provide novel clues regarding ovarian GC dysfunction in PCOS, and indirectly provide evidence that the effect of $PPAR-{\gamma}$ agonists in PCOS might result from alterations in the ovarian follicular environment. Further studies with a larger sample size are required to confirm these proposals.

The Effect of miR-361-3p Targeting TRAF6 on Apoptosis of Multiple Myeloma Cells

  • Fan, Zhen;Wu, Zhiwei;Yang, Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.197-206
    • /
    • 2021
  • microRNA-361-3p (miR-361-3p) is involved in the carcinogenesis of oral cancer and pancreatic catheter adenocarcinoma, and has anti-carcinogenic effects on non-small cell lung cancer (NSCLC). However, its effect on multiple myeloma (MM) is less reported. Here, we found that upregulating the expression of miR-361-3p inhibited MM cell viability and promoted MM apoptosis. We measured expressions of tumor necrosis factor receptor-associated factor 6 (TRAF6) and miR-361-3p in MM cells and detected the viability, colony formation rate, and apoptosis of MM cells. In addition, we measured expressions of apoptosis-related genes Bcl-2, Bax, and Cleaved caspase-3 (C caspase-3). The binding site between miR-361-3p and TRAF6 was predicted by TargetScan. Our results showed that miR-361-3p was low expressed in the plasma of MM patients and cell lines, while its overexpression inhibited viability and colony formation of MM cells and increased the cell apoptosis. Furthermore, TRAF6, which was predicted to be a target gene of miR-361-3p, was high-expressed in the plasma of patients and cell lines with MM. Rescue experiments demonstrated that the effect of TRAF6 on MM cells was opposite to that of miR-361-3p. Upregulation of miR-361-3p induced apoptosis and inhibited the proliferation of MM cells through targeting TRAF6, suggesting that miR-361-3p might be a potential target for MM therapy.