• 제목/요약/키워드: Tumor necrosis factor receptor

검색결과 292건 처리시간 0.027초

The activation of α2-adrenergic receptor in the spinal cord lowers sepsis-induced mortality

  • Kim, Sung-Su;Park, Soo-Hyun;Lee, Jae-Ryung;Jung, Jun-Sub;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권5호
    • /
    • pp.495-507
    • /
    • 2017
  • The effect of clonidine administered intrathecally (i.t.) on the mortality and the blood glucose level induced by sepsis was examined in mice. To produce sepsis, the mixture of D-galactosamine (GaLN; 0.6 g/10 ml)/lipopolysaccharide (LPS; $27{\mu}g/27{\mu}l$) was treated intraperitoneally (i.p.). The i.t. pretreatment with clonidine ($5{\mu}g/5{\mu}l$) increased the blood glucose level and attenuated mortality induced by sepsis in a dose-dependent manner. The i.t. post-treatment with clonidine up to 3 h caused an elevation of the blood glucose level and protected sepsis-induced mortality, whereas clonidine post-treated at 6, 9, or 12 h did not affect. The pre-treatment with oral D-glucose for 30 min prior to i.t. post-treatment (6 h) with clonidine did not rescue sepsis-induced mortality. In addition, i.t. pretreatment with pertussis toxin (PTX) reduced clonidine-induced protection against mortality and clonidine-induced hyperglycemia, suggesting that protective effect against sepsis-induced mortality seems to be mediated via activating PTX-sensitive G-proteins in the spinal cord. Moreover, pretreatment with clonidine attenuated the plasma tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$) induced by sepsis. Clonidine administered i.t. or i.p. increased $p-AMPK{\alpha}1$ and $p-AMPK{\alpha}2$, but decreased p-Tyk2 and p-mTOR levels in both control and sepsis groups, suggesting that the up-regulations of $p-AMPK{\alpha}1$ and $p-AMPK{\alpha}2$, or down-regulations of p-mTOR and p-Tyk2 may play critical roles for the protective effect of clonidine against sepsis-induced mortality.

The Probiotic Lactobacillus Prevents Citrobacter rodentium-Induced Murine Colitis in a TLR2-Dependent Manner

  • Ryu, Seung-Hyun;Park, Jong-Hyung;Choi, Soo-Young;Jeon, Hee-Yeon;Park, Jin-Il;Kim, Jun-Young;Ham, Seung-Hoon;Choi, Yang-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권7호
    • /
    • pp.1333-1340
    • /
    • 2016
  • The main objective of this study was to investigate whether Lactobacillus rhamnosus GG (LGG) ameliorated the effects of Citrobactor rodentium infection in Toll-like receptor 2 (TLR2) knockout (KO) and TLR4 KO mice, as well as in wild-type C57BL/6 (B6) mice. TLR2 KO, TLR4 KO, and B6 mice were divided into three groups per each strain. Each group had an uninfected control group (n = 5), C. rodentium-infected group (n = 8), and LGG-pretreated C. rodentium-infected group (n = 8). The survival rate of B6 mice infected with C. rodentium was higher when pretreated with LGG. Pretreatment with LGG ameliorated C. rodentium-induced mucosal hyperplasia in B6 and TLR4 KO mice. However, in C-rodentium-infected TLR2 KO mice, mucosal hyperplasia persisted, regardless of pretreatment with LGG. In addition, LGG-pretreated B6 and TLR4 KO mice showed a decrease in spleen weight and downregulation of tumor necrosis factor alpha, interferon gamma, and monocyte chemotactic protein 1 mRNA expression compared with the non-pretreated group. In contrast, such changes were not observed in TLR2 KO mice, regardless of pretreatment with LGG. From the above results, we conclude that pretreatment with LGG ameliorates C. rodentium-induced colitis in B6 and TLR4 KO mice, but not in TLR2 KO mice. Therefore, LGG protects mice from C. rodentium-induced colitis in a TLR2-dependent manner.

Serum Levels of Type 2 Chemokines in Lepromatous Leprosy Patients

  • Lew, Wook;Nakamura, Koichiro;Tada, Yayoi;Kwahck, Ho;Chang, Soo Kyoung;Tamaki, Kunihiko
    • IMMUNE NETWORK
    • /
    • 제2권4호
    • /
    • pp.223-226
    • /
    • 2002
  • Background: The type 2 deviated immunological state is predominant in lepromatous leprosy. Erythema nodosum leprosum (ENL) is an immune-complex mediated reaction that typically occurs in lepromatous leprosy. To date, the serum levels of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-2 receptor, IL-10, IL-$1{\beta}$, IL-1 receptor antagonist and monocyte chemoattractant protein-1 (MCP-1) were reported to be higher in lepromatous leprosy. TNF-${\alpha}$ is also known to be higher in ENL, which is reduced after thalidomide treatment. However the serum type 2 chemokine levels in lepromatous leprosy patients have not been reported. Methods: The serum levels of the type 2 chemokines such as thymus and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC) and eotaxin together with IL-12 and IL-10 in the sera from leprosy patients were detected using an enzyme-linked solvent assay (ELISA) method. Results: The Serum TARC, MDC, eotaxin, IL-10 and IL-12 levels in lepromatous leprosy patients were not significantly different from the normal control levels. The serum levels were not significantly different between the paucibacillary group and multibacillary group. The serum TARC or MDC levels in the ENL patients were more reduced after a treatment containing thalidomide. Conclusion: The type 2 chemokines are not related to the severity of lepromatous leprosy. The larger reducing effect of the TARC or MDC levels in ENL patients by a treatment containing thalidomide suggests the potential role of these chemokines in the development of ENL and the therapeutic mechanism of thalidomide.

Anti-inflammatory effects of a novel compound, MPQP, through the inhibition of IRAK1 signaling pathways in LPS-stimulated RAW 264.7 macrophages

  • Kim, Ba Reum;Cho, Young-Chang;Cho, Sayeon
    • BMB Reports
    • /
    • 제51권6호
    • /
    • pp.308-313
    • /
    • 2018
  • Small-molecule inhibitors are widely used to treat a variety of inflammatory diseases. In this study, we found a novel anti-inflammatory compound, 1-[(2R,4S)-2-methyl-4-(phenylamino)-1,2,3,4-tetrahydroquinolin-1-yl]prop-2-en-1-one (MPQP). It showed strong anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. These effects were exerted through the inhibition of the production of NO and pro-inflammatory cytokines, such as interleukin (IL)-6, $IL-1{\beta}$, and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$). Furthermore, MPQP decreased the expression levels of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2). Additionally, it mediated the inhibition of the phosphorylation of p38, c-Jun N-terminal kinase (JNK), the inhibitor of ${\kappa}B{\alpha}$ ($I{\kappa}B{\alpha}$), and their upstream kinases, $I{\kappa}B$ kinase (IKK) ${\alpha}/{\beta}$, mitogen-activated protein kinase kinase (MKK) 3/6, and MKK4. Furthermore, the expression of IL-1 receptor-associated kinase 1 (IRAK1) that regulates $NF-{\kappa}B$, p38, and the JNK signaling pathways, was also increased by MPQP. These results indicate that MPQP regulates the IRAK1-mediated inflammatory signaling pathways by targeting IRAK1 or its upstream factors.

TNFα-induced Down-Regulation of Estrogen Receptor α in MCF-7 Breast Cancer Cells

  • Lee, Sang-Han;Nam, Hae-Seon
    • Molecules and Cells
    • /
    • 제26권3호
    • /
    • pp.285-290
    • /
    • 2008
  • Estrogen-induced proliferation in estrogen receptor (ER)-positive breast cancer cells is primarily mediated through two distinct intracellular receptors, $ER{\alpha}$ and $ER{\beta}$. Although tumor necrosis factor alpha ($TNF{\alpha}$) and $E2/ER{\alpha}$ are known to exert opposing effects on cell proliferation in MCF-7 cells, the mechanism by which $TNF{\alpha}$ antagonizes $E2/ER{\alpha}$-mediated cell proliferation is not well understood. The present study suggests that reduced cell survival in response to $TNF{\alpha}$ treatment in MCF-7 cells may be associated with the down-regulation of $ER{\alpha}$ protein. The decrease in $ER{\alpha}$ protein level was accompanied by an inhibition of $ER{\alpha}$ gene transcription. Cell viability was decreased synergistically by the combined treatment with $ER{\alpha}$-siRNA and $TNF{\alpha}$. Furthermore, pretreatment of cells with the PI3-kinase (PI3K)/ Akt inhibitor, LY294002, markedly enhanced $TNF{\alpha}$-induced down-regulation of the $ER{\alpha}$ protein, suggesting that the PI3K/Akt pathway might be involved in control of the $ER{\alpha}$ level. Moreover, down-regulation of $ER{\alpha}$ by $TNF{\alpha}$ was not inhibited in cells that were pretreated with the proteasome inhibitors, MG132 and MG152, which suggests that proteasome-dependent proteolysis does not significantly influence $TNF{\alpha}$-induced down-regulation of $ER{\alpha}$ protein. In contrast, the effect of the PI3K/Akt inhibitor on $ER{\alpha}$ was blocked in cells that were treated with LY294002 in the presence of the proteasome inhibitors. Collectively, our findings show that the $TNF{\alpha}$ may partly regulate the growth of MCF-7 breast cancer cells through the down-regulation of $ER{\alpha}$ expression, which is primarily mediated by a PI3K/Akt signaling.

S. abortus 유래 LPS와 E. coli 유래 LPS에 의한 패혈증성 쇽 유도 작용 비교 (Differential Induction of Septic Shock by Lipopolysacchrides from E. coli and S. abortus)

  • 조재열;유은숙
    • 약학회지
    • /
    • 제51권1호
    • /
    • pp.44-50
    • /
    • 2007
  • Acute septic shock is one of inflammatory diseases mediated by pro-inflammatory cytokines such as tumor necrosis factor (TNF)-${\alpha}$. In this study, we examined the pathological difference and mechanism of lipopolysaccharides isolated from E. coli (E-LPS) or S. abortus (S-LPS) on inducing acute septic shock in ICR mouse. All mice were died by intraperitoneal treatment of S-LPS with 0.75 mg/kg, whereas E-LPS treated with even 3 mg/kg only showed 30% of mice lethal, indicating that S-LPS may be more feasible in triggering a strong septic shock condition. The secretion pattern of TNF-${\alpha}$, a critical pro-inflammatory cytokine in septic shock condition, was also distinct between E-LPS- and S-LPS-treated groups. Thus, S-LPS strikingly increased serum level of TNF-${\alpha}$ (6 ng/ml) at 1 h, while E-LPS just displayed at 2 ng/ml level. However the interaction of S-LPS with LPS receptor toll like receptor (TLR)-4, was not stronger than that of E-LPS, according to experiments with macrophage cell line RAW264.7 cells. Thus, E-LPS rather than S-LPS strongly enhanced the production of TNF-${\alpha}$. Interestingly, S-LPS more strongly up-regulated splenocyte proliferation, compared to E-LPS group, whereas there was no difference between S- or E-LPS treated groups in proliferation of Balb/c- or C57BL/6-originated splenic lymphocytes. Therefore, our data suggest that S-LPS is a more active endotoxin and that the strong septic shock-inducing effect of S-LPS seems due to the enhancement of early TNF-${\alpha}$ production and S-LPS-sensitive lymphocyte proliferation.

Deletion Analysis of the Major NF-${\kappa}B$ Activation Domain in Latent Membrane Protein 1 of Epstein-Barr Virus

  • Cho, Shin;Lee, Won-Keun
    • Journal of Microbiology
    • /
    • 제37권4호
    • /
    • pp.256-262
    • /
    • 1999
  • Latent membrane protein 1 (LMP1) of the Epstein-Barr virus (EBV) is an integral membrane protein with six transmembrane domains, which is essential for EBV-induced B cell transformation. LMP1 functions as a constitutively active tumor necrosis factor receptor (TNFR) like membrane receptor, whose signaling requires recruitment of TNFR-associated factors (TRAFs) and leads to NF-${\kappa}B$ activation. NF-${\kappa}B$ activation by LMP1 is critical for B cell transformation and has been linked to many phenotypic changes associated with EBV-induced B cell transformation. Deletion analysis has identified two NF-${\kappa}B$ activation regions in the carboxy terminal cytoplasmic domains of LMP1, termed CTAR1 (residues 194-232) and CTAR2 (351-386). The membrane proximal C-terminal domain was precisely mapped to a PXQXT motif (residues 204-208) involved in TRAF binding as well as NF-${\kappa}B$ activation. In this study, we dissected the CTAR2 region, which is the major NF-${\kappa}B$ signaling effector of LMP1, to determine a minimal functional sequence. A series of LMP1 mutant constructs systematically deleted for the CTAR2 region were prepared, and NF-${\kappa}B$ activation activity of these mutants were assessed by transiently expressing them in 293 cells and Jurkat T cells. The NF-${\kappa}B$ activation domain of CTAR2 appears to reside in a stretch of 6 amino acids (residues 379-384) at the end of the carboxy terminus.

  • PDF

Telmisartan Inhibits TNFα-Induced Leukocyte Adhesion by Blocking ICAM-1 Expression in Astroglial Cells but Not in Endothelial Cells

  • Jang, Changhwan;Kim, Jungjin;Kwon, Youngsun;Jo, Sangmee A.
    • Biomolecules & Therapeutics
    • /
    • 제28권5호
    • /
    • pp.423-430
    • /
    • 2020
  • Telmisartan is an angiotensin-II receptor blocker and acts as a selective modulator of peroxisome proliferator-activated receptor gamma (PPARγ). Several studies have demonstrated that telmisartan ameliorates depression and memory dysfunction and reduces brain inflammation. We hypothesized that the beneficial effects of telmisartan on brain could be due to modulation of the blood-brain barrier (BBB) function. Here, we examined the effect of telmisartan on tumor necrosis factor alpha (TNF-α)-induced expression of intercellular adhesion molecule 1 (ICAM-1) which plays an important role in leukocyte transcytosis through the BBB. Telmisartan blocked TNF-α-induced ICAM-1 expression and leukocyte adhesion in U87MG human glioma cells but showed no effect on human brain microvascular endothelial cells. In U87MG cells, a PPAR antagonist, GW9662 did not block the effect of telmisartan on ICAM1 expression but rather potentiated. Moreover, GW9662 caused no change in TNF-α-induced ICAM-1 expression, suggesting no implication of PPARγ in the telmisartan effect. Further studies showed that telmisartan blocked TNF-α-induced activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and nuclear factorkappa B (NF-κB). In contrast, inhibitors of JNK, ERK1/2 and NF-κB but not p38, blocked ICAM-1 expression induced by TNF-α. Thus, our findings suggest that the beneficial effect of telmisartan is likely due to the reduction of astrocytic ICAM1 expression and leukocytes adhesion to astrocytes, and that this response was mediated by the inhibition of JNK/ERK1/2/NF-κB activation and in the PPAR-independent manner. In conclusion, this study enhances our understanding of the mechanism by which telmisartan exerts the beneficial brain function.

Clinical features, diagnosis, and outcomes of multisystem inflammatory syndrome in children associated with coronavirus disease 2019

  • Kwak, Ji Hee;Lee, Soo-Young;Choi, Jong-Woon;Korean Society of Kawasaki Diseasety of Pediatric Endocrinology (KSPE),
    • Clinical and Experimental Pediatrics
    • /
    • 제64권2호
    • /
    • pp.68-75
    • /
    • 2021
  • The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been spreading worldwide since December 2019. Hundreds of cases of children and adolescents with Kawasaki disease (KD)-like hyperinflammatory illness have been reported in Europe and the United States during the peak of the COVID-19 pandemic with or without shock and cardiac dysfunction. These patients tested positive for the polymerase chain reaction or antibody test for SARS-CoV-2 or had a history of recent exposure to COVID-19. Clinicians managing such patients coined new terms for this new illness, such as COVID-19-associated hyperinflammatory response syndrome, pediatric inflammatory multisystem syndrome temporally associated with COVID-19, or COVID-19-associated multisystem inflammatory syndrome in children (MIS-C). The pathogenesis of MIS-C is unclear; however, it appears similar to that of cytokine storm syndrome. MIS-C shows clinical features similar to KD, but differences between them exist with respect to age, sex, and racial distributions and proportions of patients with shock or cardiac dysfunction. Recommended treatments for MIS-C include intravenous immunoglobulin, corticosteroids, and inotropic or vasopressor support. For refractory patients, monoclonal antibody to interleukin-6 receptor (tocilizumab), interleukin-1 receptor antagonist (anakinra), or monoclonal antibody to tumor necrosis factor (infliximab) may be recommended. Patients with coronary aneurysms require aspirin or anticoagulant therapy. The prognosis of MIS-C seemed favorable without sequelae in most patients despite a reported mortality rate of approximately 1.5%.

Immune-Enhancing Effects of Crude Polysaccharides from Korean Ginseng Berries on Spleens of Mice with Cyclophosphamide-Induced Immunosuppression

  • Nam, Ju Hyun;Choi, JeongUn;Monmai, Chaiwat;Rod-in, Weerawan;Jang, A-yeong;You, SangGuan;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권2호
    • /
    • pp.256-262
    • /
    • 2022
  • Panax ginseng C. A. Meyer is well known as traditional herbal medicine, and ginseng berries are known to exhibit potential immune-enhancing functions. However, little is known about the in vivo immunomodulatory activity of Korean ginseng berries. In this study, crude Korean ginseng berries polysaccharides (GBP) were isolated and their immunomodulatory activities were investigated using cyclophosphamide (CY)-induced immunosuppressive BALB/c mice. In CY-treated mice, oral administration of GBP (50-500 mg/kg BW) remarkably increased their spleen sizes and spleen indices and activated NK cell activities. GBP also resulted in the proliferation of splenic lymphocytes (coordinating with ConA: plant mitogen which is known to stimulate T-cell or LPS: endotoxin which binds receptor complex in B cells to promote the secretion of pro-inflammatory cytokines) in a dose-dependent manner. In addition, GBP significantly stimulated mRNA expression levels of immune-associated genes including interleukin-1β (IL-1β), IL-2, IL-4, IL-6, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), toll-like receptor 4 (TLR-4), and cyclooxygenase-2 (COX-2) in CY-treated mice. These results indicate that GBP is involved in immune effects against CY-induced immunosuppression. Thus, GBP could be developed as an immunomodulation agent for medicinal or functional food application.