Browse > Article
http://dx.doi.org/10.4014/jmb.1602.02004

The Probiotic Lactobacillus Prevents Citrobacter rodentium-Induced Murine Colitis in a TLR2-Dependent Manner  

Ryu, Seung-Hyun (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University)
Park, Jong-Hyung (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University)
Choi, Soo-Young (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University)
Jeon, Hee-Yeon (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University)
Park, Jin-Il (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University)
Kim, Jun-Young (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University)
Ham, Seung-Hoon (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University)
Choi, Yang-Kyu (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.7, 2016 , pp. 1333-1340 More about this Journal
Abstract
The main objective of this study was to investigate whether Lactobacillus rhamnosus GG (LGG) ameliorated the effects of Citrobactor rodentium infection in Toll-like receptor 2 (TLR2) knockout (KO) and TLR4 KO mice, as well as in wild-type C57BL/6 (B6) mice. TLR2 KO, TLR4 KO, and B6 mice were divided into three groups per each strain. Each group had an uninfected control group (n = 5), C. rodentium-infected group (n = 8), and LGG-pretreated C. rodentium-infected group (n = 8). The survival rate of B6 mice infected with C. rodentium was higher when pretreated with LGG. Pretreatment with LGG ameliorated C. rodentium-induced mucosal hyperplasia in B6 and TLR4 KO mice. However, in C-rodentium-infected TLR2 KO mice, mucosal hyperplasia persisted, regardless of pretreatment with LGG. In addition, LGG-pretreated B6 and TLR4 KO mice showed a decrease in spleen weight and downregulation of tumor necrosis factor alpha, interferon gamma, and monocyte chemotactic protein 1 mRNA expression compared with the non-pretreated group. In contrast, such changes were not observed in TLR2 KO mice, regardless of pretreatment with LGG. From the above results, we conclude that pretreatment with LGG ameliorates C. rodentium-induced colitis in B6 and TLR4 KO mice, but not in TLR2 KO mice. Therefore, LGG protects mice from C. rodentium-induced colitis in a TLR2-dependent manner.
Keywords
Citrobacter rodentium; colitis; Lactobacillus rhamnosus; probiotic; Toll-like receptor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barthold SW, Coleman GL, Jacoby RO, Livestone EM, Jonas AM. 1978. Transmissible murine colonic hyperplasia. Vet. Pathol. 15: 223-236.   DOI
2 Ciorba MA, Riehl TE, Rao MS, Moon C, Ee X, Nava GM, et al. 2012. Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR-2/cyclo-oxygenase-2-dependent manner. Gut 61: 829-838.   DOI
3 Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart TA. 1993. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 259: 1739-1742.   DOI
4 Deng W, Li Y, Vallance BA, Finlay BB. 2001. Locus of enterocyte effacement from Citrobacter rodentium: sequence analysis and evidence for horizontal transfer among attaching and effacing pathogens. Infect. Immun. 69: 6323-6335.   DOI
5 Dogi CA, Galdeano CM, Perdigón G. 2008. Gut immune stimulation by non pathogenic gram (+) and gram (−) bacteria. Comparison with a probiotic strain. Cytokine 41: 223-231.   DOI
6 Dong L, Li J, Liu Y, Yue W, Luo X. 2012. Toll-like receptor 2 monoclonal antibody or/and Toll-like receptor 4 monoclonal antibody increase counts of lactobacilli and bifidobacteria in dextran sulfate sodium-induced colitis in mice. J. Gastroenterol. Hepatol. 27: 110-119.   DOI
7 Dorner BG, Scheffold A, Rolph MS, Huser MB, Kaufmann SH, Radbruch A, et al. 2002 MIP-1α, MIP-1β, RANTES, and ATAC/lymphotactin function together with IFN-γ as type 1 cytokines. Proc. Natl. Acad. Sci. USA 99: 6181-6186.   DOI
8 Doron S, Snydman DR, Gorbach SL. 2005. Lactobacillus GG: bacteriology and clinical applications. Gastroenterol. Clin. North Am. 34: 483-498.   DOI
9 Gibson DL, Ma C, Rosenberger CM, Bergstrom KS, Valdez Y, Huang JT, et al. 2008. Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Cell. Microbiol. 10: 388-403.   DOI
10 Hartland EL, Batchelor M, Delahay RM, Hale C, Matthews S, Dougan G, et al. 1999. Binding of intimin from enteropathogenic Escherichia coli to Tir and to host cells. Mol. Microbiol. 32: 151-158.   DOI
11 Higgins LM, Frankel G, Connerton I, Gonçalves NS, Dougan G, MacDonald TT. 1999. Role of bacterial intimin in colonic hyperplasia and inflammation. Science 285: 588-591.   DOI
12 Higgins LM, Frankel G, Douce G, Dougan G, MacDonald TT. 1996. Citrobacter rodentium infection in mice elicits a mucosal Th1 cytokine response and lesions similar to those in murine inflammatory bowel disease. Infect. Immun. 67: 3031-3039.
13 Johansson ML, Nobaek S, Berggren A, Nyman M, Björck I, Ahrné S, et al. 1998. Survival of Lactobacillus plantarum DSM 9843 (299v), and effect on the short-chain fatty acid content of faeces after ingestion of a rose-hip drink with fermented oats. Int. J. Food Microbiol. 42: 29-38.   DOI
14 Johnson-Henry KC, Nadjafi M, Avitzur Y, Mitchell DJ, Ngan BY, Galindo-Mata E, et al. 2005. Amelioration of the effects of Citrobacter rodentium infection in mice by pretreatment with probiotics. J. Infect. Dis. 191: 2106-2117.   DOI
15 Kerr AR, Irvine JJ, Search JJ, Gingles NA, Kadioglu A, Andrew PW, et al. 2002. Role of inflammatory mediators in resistance and susceptibility to pneumococcal infection. Infect. Immun. 70: 1547-1557.   DOI
16 Luperchio SA, Newman JV, Dangler CA, Schrenzel MD, Brenner DJ, Steigerwalt AG, Schauer DB. 2000. Citrobacter rodentium, the causative agent of transmissible murine colonic hyperplasia, exhibits clonality: synonymy of C. rodentium and mouse-pathogenic Escherichia coli. J. Clin. Microbiol. 38: 4343-4350.
17 Khan MA, Ma C, Knodler LA, Valdez Y, Rosenberger CM, Deng W, et al. 2006. Toll-like receptor 4 contributes to colitis development but not to host defense during Citrobacter rodentium infection in mice. Infect. Immun. 74: 2522-2536.   DOI
18 Kim M, Ashida H, Ogawa M, Yoshikawa Y, Mimuro H, Sasakawa C. 2010. Bacterial interactions with the host epithelium. Cell Host Microbe 8: 20-35.   DOI
19 Kruis W, Fric P, Pokrotnieks J, Lukás M, Fixa B, Kascák M, et al. 2004. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 53: 1617-1623.   DOI
20 Luperchio SA, Schauer DB. 2001. Molecular pathogenesis of Citrobacter rodentium and transmissible murine colonic hyperplasia. Microbes Infect. 3: 333-340.   DOI
21 Moayyedi P, Ford AC, Talley NJ, Cremonini F, Foxx-Orenstein AE, Brandt LJ, Quigley EM. 2010. The efficacy of probiotics in the treatment of irritable bowel syndrome: a systematic review. Gut 59: 325-332.   DOI
22 Mukai T, Asasaka T, Sato E, Mori K, Matsumoto M, Ohori H. 2002. Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri. FEMS Immunol. Med. Microbiol. 32: 105-110.   DOI
23 Mundy R, MacDonald TT, Dougan G, Frankel G, Wiles S. 2005. Citrobacter rodentium of mice and man. Cell. Microbiol. 7: 1697-1706.   DOI
24 Rodrigues DM, Sousa AJ, Johnson-Henry KC, Sherman PM, Gareau MG. 2012. Probiotics are effective for the prevention and treatment of Citrobacter rodentium-induced colitis in mice. J. Infect. Dis. 206: 99-109.   DOI
25 Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11: 142-201.
26 Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. 2004. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118: 229-241.   DOI
27 Rath HC, Herfarth HH, Ikeda JS, Grenther WB, Hamm TE Jr, Balish E, et al. 1996. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J. Clin. Invest. 98: 945-953.   DOI
28 Sartor RB. 2006. Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. Nat. Clin. Pract. Gastroenterol. Hepatol. 3: 390-407.   DOI
29 Sartor RB. 2008. Microbial influences in inflammatory bowel diseases. Gastroenterology 134: 577-594.   DOI
30 Schauer DB, Zabel BA, Pedraza IF, O’Hara CM, Steigerwalt AG, Brenner DJ. 1995. Genetic and biochemical characterization of Citrobacter rodentium sp. nov. J. Clin. Microbiol. 33: 2064-2068.
31 Takeda K, Akira S. 2005. Toll-like receptors in innate immunity. Int. Immunol. 17: 1-14.   DOI
32 Wei OL, Hilliard A, Kalman D, Sherman M. 2005. Mast cells limit systemic bacterial dissemination but not colitis in response to Citrobacter rodentium. Infect. Immun. 73: 1978-1985.   DOI
33 Yan F, Polk DB. 2012. Lactobacillus rhamnosus GG: an updated strategy to use microbial products to promote health. Funct. Food Rev. 4: 77-84.
34 Williams MD, Ha CY, Ciorba MA. 2010. Probiotics as therapy in gastroenterology: a study of physician opinions and recommendations. J. Clin. Gastroenterol. 44: 631-636.
35 Williams NT. 2010. Probiotics. Am. J. Health Syst. Pharm. 67: 449-458.   DOI
36 Xu LL, Warren MK, Rose WL, Gong W, Wang JM. 1996. Human recombinant monocyte chemotactic protein and other CC chemokines bind and induce directional migration of dendritic cells in vitro. J. Leukoc. Biol. 60: 365-371.   DOI