• Title/Summary/Keyword: Tumor necrosis factor a (TNF-${\alpha}$

Search Result 1,125, Processing Time 0.029 seconds

Lung Injury Indices Depending on Tumor Necrosis Factor-$\alpha$ Level and Novel 35 kDa Protein Synthesis in Lipopolysaccharide-Treated Rat (내독소처치 흰쥐에서 Tumor Necrosis Factor-$\alpha$치 상승에 따른 폐손상 악화 및 35 kDa 단백질 합성)

  • Choi, Young-Mee;Kim, Young-Kyoon;Kwon, Soon-Seog;Kim, Kwan-Hyoung;Moon, Hwa-Sik;Song, Jeong-Sup;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.6
    • /
    • pp.1236-1251
    • /
    • 1998
  • Background : TNF-$\alpha$ appears to be a central mediator of the host response to sepsis. While TNF-$\alpha$ is mainly considered a proinflammatory cytokine, it can also act as a direct cytotoxic cytokine. However, there are not so many studies about the relationship bet ween TNF-$\alpha$ level and lung injury severity in ALI, particularly regarding the case of ALI caused by direct lung injury such as diffuse pulmonary infection. Recently, a natural defense mechanism, known as the stress response or the heat shock response, has been reported in cellular or tissue injury reaction. There are a number of reports examining the protective role of pre-induced heat stress proteins on subsequent LPS-induced TNF-$\alpha$ release from monocyte or macrophage and also on subsequent LPS-induced ALI in animals. However it is not well established whether the stress protein synthesis such as HSP can be induced from rat alveolar macrophages by in vitro or in vivo LPS stimulation. Methods : We measured the level of TNF-$\alpha$, the percentage of inflammatory cells in bronchoalveolar lavage fluid, protein synthesis in alveolar macrophages isolated from rats at 1, 2, 3, 4, 6, 12, and 24 hours after intratracheal LPS instillation. We performed histologic examination and also obtained histologic lung injury index score in lungs from other rats at 1, 2, 3, 4, 6, 12, 24 h after intratracheal LPS instillation. Isolated non-stimulated macrophages were incubated for 2 h with different concentration of LPS (0, 1, 10, 100 ng/ml, 1, or 10 ${\mu}g/ml$). Other non-stimulated macrophages were exposed at $43^{\circ}C$ for 15 min, then returned to at $37^{\circ}C$ in 5% CO2-95% for 1 hour, and then incubated for 2 h with LPS (0, 1, 10, 100ng/ml, 1, or 10 ${\mu}g/ml$). Results : TNF-$\alpha$ levels began to increase significantly at 1 h, reached a peak at 3 h (P<0.0001), began to decrease at 6 h, and returned to control level at 12 h after LPS instillation. The percentage of inflammatory cells (neutrophils and alveolar macrophages) began to change significantly at 2 h, reached a peak at 6 h, began to recover but still showed significant change at 12 h, and showed insignificant change at 24 h after LPS instillation compared with the normal control. After LPS instillation, the score of histologic lung injury index reached a maximum value at 6 h and remained steady for 24 hours. 35 kDa protein band was newly synthesized in alveolar macrophage from 1 hour on for 24 hours after LPS instillation. Inducible heat stress protein 72 was not found in any alveolar macrophages obtained from rats after LPS instillation. TNF-$\alpha$ levels in supernatants of LPS-stimulated macro phages were significantly higher than those of non-stimulated macrophages(p<0.05). Following LPS stimulation, TNF-$\alpha$ levels in supernatants were significantly lower after heat treatment than in those without heat treatment (p<0.05). The inducible heat stress protein 72 was not found at any concentrations of LPS stimulation. Whereas the 35 kDa protein band was exclusively found at dose of LPS of 10 ${\mu}g/ml$. Conclusion : TNF-$\alpha$ has a direct or indirect close relationship with lung injury severity in acute lung injury or acute respiratory distress syndrome. In vivo and in vitro LPS stimulation dose not induce heat stress protein 72 in alveolar macrophages. It is likely that 35 kDa protein, synthesized by alveolar macrophage after LPS instillation, does not have a defense role in acute lung injury.

  • PDF

Tumor Necrosis Factor ${\alpha}$ up-regulates the Expression of beta2 Adrenergic Receptor via NF-${\kappa}B$-dependent Pathway in Osteoblasts

  • Baek, Kyunghwa;Kang, Jiho;Hwang, Hyo Rin;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.38 no.3
    • /
    • pp.121-126
    • /
    • 2013
  • Tumor necrosis factor alpha ($TNF{\alpha}$) is a multifunctional inflammatory cytokine that regulates various cellular and biological processes. Increased levels of $TNF{\alpha}$ have been implicated in a number of human diseases including diabetes and arthritis. Sympathetic nervous system stimulation via the beta2-adrenergic receptor (${\beta}2AR$) in osteoblasts suppresses osteogenic activity. We previously reported that $TNF{\alpha}$ upregulates ${\beta}2AR$ expression in murine osteoblastic cells and that this modulation is associated with $TNF{\alpha}$ inhibition of osteoblast differentiation. In our present study, we explored whether $TNF{\alpha}$ induces ${\beta}2AR$ expression in human osteoblasts and then identified the downstream signaling pathway. Our results indicated that ${\beta}2AR$ expression was increased in Saos-2 and C2C12 cells by $TNF{\alpha}$ treatment, and that this increase was blocked by the inhibition of NF-${\kappa}B$ activation. Chromatin immunoprecipitation and luciferase reporter assay results indicated that NF-${\kappa}B$ directly binds to its cognate elements on the ${\beta}2AR$ promoter and thereby stimulates ${\beta}2AR$ expression. These findings suggest that the activation of $TNF{\alpha}$ signaling in osteoblastic cells leads to an upregulation of ${\beta}2AR$ and also that $TNF{\alpha}$ induces ${\beta}2AR$ expression in an NF-${\kappa}B$-dependent manner.

Inhibition of TNF-α-Mediated NF-κB Transcriptional Activity by Dammarane-Type Ginsenosides from Steamed Flower Buds of Panax ginseng in HepG2 and SK-Hep1 Cells

  • Cho, Kyoungwon;Song, Seok Bean;Nguyen, Huu Tung;Kim, Kyoon Eon;Kim, Young Ho
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.55-61
    • /
    • 2014
  • Panax ginseng is a medicinal herb that is used worldwide. Its medicinal effects are primarily attributable to ginsenosides located in the root, leaf, seed, and flower. The flower buds of Panax ginseng (FBPG) are rich in various bioactive ginsenosides, which exert immunomodulatory and anti-inflammatory activities. The aim of the present study was to assess the effect of 18 ginsenosides isolated from steamed FBPG on the transcriptional activity of NF-${\kappa}B$ and the expression of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-stimulated target genes in liver-derived cell lines. Noticeably, the ginsenosides $Rk_3$ and $Rs_4$ exerted the strongest activity, inhibiting NF-${\kappa}B$ in a dose-dependent manner. SF and $Rg_6$ also showed moderately inhibitory effects. Furthermore, these four compounds inhibited the TNF-${\alpha}$-induced expression of IL8, CXCL1, iNOS, and ICAM1 genes. Consequently, ginsenosides purified from steamed FBPG have therapeutic potential in TNF-${\alpha}$-mediated diseases such as chronic hepatic inflammation.

Cilostazol Decreases Ethanol-Mediated TNFalpha Expression in RAW264.7 Murine Macrophage and in Liver from Binge Drinking Mice

  • Lee, Youn-Ju;Eun, Jong-Ryeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.2
    • /
    • pp.131-138
    • /
    • 2012
  • Alcoholic hepatitis is a leading cause of liver failure in which the increased production of tumor necrosis factor ${\alpha}$ (TNF${\alpha}$) plays a critical role in progression of alcoholic liver disease. In the present study, we investigated the effects of cilostazol, a selective inhibitor of type III phosphodiesterase on ethanol-mediated TNF${\alpha}$ production in vitro and $in$ $vivo$, and the effect of cilostazol was compared with that of pentoxifylline, which is currently used in clinical trial. RAW264.7 murine macrophages were pretreated with ethanol in the presence or absence of cilostazol then, stimulated with lipopolysacchride (LPS). Cilostazol significantly suppressed the level of LPS-stimulated TNF${\alpha}$ mRNA and protein with a similar degree to that by pentoxifylline. Cilostazol increased the basal AMP- activated protein kinase (AMPK) activity as well as normalized the decreased AMPK by LPS. AICAR, an AMPK activator and db-cAMP also significantly decreased TNF${\alpha}$ production in RAW264.7 cells, but cilostazol did not affect the levels of intracellular cAMP and reactive oxygen species (ROS) production. The $in$ $vivo$ effect of cilostazol was examined using ethanol binge drinking (6 g/kg) mice model. TNF${\alpha}$ mRNA and protein decreased in liver from ethanol gavaged mice compared to that from control mice. Pretreatment of mice with cilostazol or pentoxifylline further reduced the TNF${\alpha}$ production in liver. These results demonstrated that cilostazol effectively decrease the ethanol-mediated TNF${\alpha}$ production both in murine macrophage and in liver from binge drinking mice and AMPK may be responsible for the inhibition of TNF${\alpha}$ production by cilostazol.

Saxatilin, a Snake Venom Disintegrin, Suppresses TNF-α-induced Ovarian Cancer Cell Invasion

  • Kim, Dong-Seok;Jang, Yoon-Jung;Jeon, Ok-Hee;Kim, Doo-Sik
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.290-294
    • /
    • 2007
  • Saxatilin is a disintegrin known to inhibit tumor progression in vivo and in vitro. The role of saxatilin in cancer cell invasion was examined by a modified Boyden chamber assay in MDAH 2774 human ovarian cancer cell line. Saxatilin (50 nM) significantly inhibited cancer cell invasion induced by tumor necrosis factor-$\alpha$ (TNF-a$\alpha$). Saxatilin also reduced MMP-9 mRNA levels in cancer cells in a dosedependent manner. In addition, TNF-$\alpha$-induced MMP-9 activity was reduced by the treatment of saxatilin. These results indicate that transcriptional regulation of MMP-9 is an important mechanism for the tumor suppressive effects of saxatilin in MDAH 2774 human ovarian cancer cells.

Inhibitory Effect of Mast Cell-Mediated Anaphylactic Reactions and Tumor Necrosis $Factor-{\alpha}$ Production by Aqueous Extract of Sinomenium acutum stem (방기 전탕액의 비만세포 매개성 아나필락시반응 및 종양괴사인자알파 생성 억제효과)

  • 김동혁;송봉근;이언정;김형균
    • The Journal of Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.52-59
    • /
    • 2000
  • Objectives: The root and stem of Sinomenium acutum has been used for treatment of arthritis and neuralgia in oriental medicine. To find new substances of the anti-anaphylactic drugs, we studied Sinomenium acutum. Methods: To investigate the effect of this plant, the effect on anaphylactic reaction, plasma histamine level, and tumor necrosis $factor-{\alpha}-(TNF-{\alpha})$ production were measured after the aqueous extract of Sinomenium acutum stem (SSAE) was administrated to mice and rats. Results: The SSAE (0.1 to 1000 mg/kg) dose-dependently inhibited systemic anaphylactic reaction induced by compound 48/80 in mice. Especially, SSAE reduced compound 48/80-induced anaphylactic reaction with 50% at the dose of 1000 mg/kg. SSAE (100 to 1000 mg/kg) also significantly inhibited local anaphylactic reaction activated by anti-dinitrophenyl (DNP) IgE. When mice were pretreated with SSAE at a concentration ranging from 0.1 to 1000 mg/kg, the plasma histamine levels were reduced in a dose-dependent manner. SSAE (1 to 1000 g/ml) dose-dependently inhibited histamine release from the rat peritoneal mast cells (RPMCs) activated by compound 48/80 or anti-DNP IgE. The level of cAMP in RPMCs, when SSAE was added, increased compared with that of a normal control. In addition, SSAE (0.1 g/ml) had a significant inhibitory effect on anti-DNP IgE-induced $TNF-{\alpha}$ production. Conclusions: These results indicate that SSAE inhibits mast cell-mediated anaphylactic reactions and $TNF-{\alpha}$ production from mast cells.

  • PDF

A Study on the Effects of Sunghyangjungkisan-ga-pogokyoung on In vitro Alzheimer's Disease Experimental Model (생체외(生體外) 알츠하이머병 실험(實驗) 모델에서 성향정기산가포공영(星香正氣散加蒲公英)의 효과(效果)에 관(關)한 연구(硏究))

  • Kang Hyung-Won;Lyu Yeoung-Su;Park Jin-Sung
    • Journal of Oriental Neuropsychiatry
    • /
    • v.12 no.2
    • /
    • pp.157-171
    • /
    • 2001
  • Astrocytes are glial cells that play a major role in the inflammation observed in Alzheimer's disease (AD). Upon stimulation from various agents, these cells adopt a reactive phenotype, a morphological hallmark in AD pathology, during which they themselves may produce still more inflammatory cytokines. Substance P (SP) can stimulate secretion of tumor necrosis $factor-\;{\alpha}$ $(TNF-\;{\alpha})$ from astrocytes stimulated with lipopolysaccharide (LPS). Here I report that Sunghyangjungkisan- ga- pogokyoung(Sgp) can modulate cytokines secretion from primary cultures of rat astrocytes. Sgp $(10\;to\;1000\;{\mu}g/ml)$ significantly inhibited the $TNF-\;{\alpha}$ secretion by astrocytes stimulated with LPS and SP. Interleukin-1 (IL-1) has been shown to elevate $TNF-\;{\alpha}$ secretion from LPS-stimulated astrocytes while having no effect on astrocytes in the absence of LPS. Treatment of Sgp $(10\;to\;1000\;{\mu}g/ml)$ to astrocytes stimulated with both LPS and SP decreased IL-1 secretion significantly. The secretion of $TNF-\;{\alpha}$ by LPS and SP in astrocytes was progressively inhibited with increasing amount of IL-1 neutralizing antibody. Neurodegenerative processes in AD are thought to be driven in part by the deposition of ${\beta}\;-amyloid\;(A\;{\beta})$, a 39- to 43-amino acid peptide product resulting from an alternative cleavage of amyloid precursor protein. Sgp $(10\;to\;1000\;{\mu}g/ml)$ significantly inhibited the $TNF-\;{\alpha}$ secretion by astrocytes stimulated with $A-{\beta}-$and IL-1. These results suggest that Sgp may inhibit $TNF-\;{\alpha}$ secretion by inhibiting IL-1 secretion and that Sgp has an antiinflammatory activity in AD brain

  • PDF

Anti-inflammatory Effects and Its Mechanisms of NANA (N-Acylneuraminic Acid) Isolated from Glycomacropeptide (유청단백질 Glycomacropeptide에서 분리한 NANA의 안전성 및 염증저하 메카니즘 구명 연구)

  • Kim, Min-Ho;Kim, Jae-Hong;Lee, Yun-Kyoung;Kim, Wan-Sik;Kim, Hee-Kyoung
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.17-23
    • /
    • 2011
  • The focus of this study was to clarify the relation between the nitric oxide (NO) production and cytokine expression including tumor necrosis factor-${\alpha}$ (TNF) and interleukin-6 (IL-6), and also investigated the effect of G-NANA (N-acylneuraminic acid isolates from glycomacropeptide) or S-NANA (Synthetic N-acylneuraminic acid) on LPS stimuli from RAW264.7 cell. The NANA is the predominant sialic acid found in mammalian cells and G-NANA is isolation of GMP (GMP is a valuable bioactive peptide with a varying degree of glycosylation including sialic acid). The lipopolysaccharide (LPS) of Gram-negative bacteria induces the expression of cytokines and potent inducers of inflammatory cytokines such as TNF-${\alpha}$ and IL-6. In this experiment, upon stimulation with increasing concentrations of chitosan, the LPS-stimulated TNF-${\alpha}$ and IL-6 secretion was significantly recovered with in the incubation media of RAW264.7 cells. Consistently, RT-PCR with mRNA and immunoblot analysis with anti-cytokine antiserum including TNF-${\alpha}$ and IL-6 showed that the amount of TNF-${\alpha}$ and IL-6 secretion in the incubation media recovered with the concentration of chitosan. The LPS-stimulated NO secretion was significantly recovered with in the 6 and 12 h incubation media of RAW264.7 cells, too. The recovery effect of G-NANA on IL-6 and NO secretion may be induced via the stimulus of TNF-${\alpha}$ in RAW264.7 cell. These results once again suggest that G-NANA may have the anti-inflammatory effect via the stimulus of TNF-${\alpha}$ in the LPS-stimulated inflammation in RAW264.7 cells.

  • PDF

A Study on the Association between Tumor Necrosis Factor Alpha Gene Polymorphism and Sasang Constitution in Cerebral Infarction

  • Lee Jae-Heung;Joo Jong-Cheon;Kim Kyung-Yo;Lee Sang-Min;Yoo Gwan-Seok;Ko Ki-Duk;Park Soo-Jeong;Lee Kyung-Sung;Choi Yong-Seok;Kim Jong-Yeol
    • The Journal of Korean Medicine
    • /
    • v.26 no.1 s.61
    • /
    • pp.59-70
    • /
    • 2005
  • Objective: Tumor necrosis factor-a $(TNF-{\alpha})$, a potent immuno-modulator and pro-inflammatory cytokine, has been implicated in many pathological processes. In this study, the author examined whether promoter region polymorphism in the $TNF-{\alpha}$a gene at position-308 affect the odds of cerebral infarction (CI) and whether genetic risk is enhanced by sasang constitutional classification. Methods: 212 CI patients and 610 healthy controls were genotyped and determined according to sasang constitutional classification. The amplified genotypes were analyzed on $8\%$ polyacrylamide gel. The alleles were visualized by ethidium bromide staining. Primers for $TNF-{\alpha}$ were designed to incorporate a polymorphic site at a position -308 bp of the $TNF-{\alpha}$ gene into an NcoI restriction site. Restriction digests generated products of 87 and 20 bp for G allele and 107 bp for A allele. Results : A significant decrease was found for the $TNF-{\alpha}$ A allele in CI patients compared with controls (P=0.033, odds ratio, O.R.: 0.622). However, there was no significant association between $TNF-{\alpha}$ polymorphism and sasang constitution in CI patients. Conclusion: My finding suggests that $TNF-{\alpha}$promoter region polymorphism is responsible for susceptibility to CI in Koreans.

  • PDF

Studies on the anti-inflammatory action of Chilbokyeum extract in central nervous system (중추신경계(中樞神經系)에서 칠복음(七福飮)의 항염증작용(抗炎症作用)에 관한 연구(硏究))

  • Min Sang-Jun;Lee Sung-Ryull;Kang Hyung-Won;Lyu Yeoung-Su;Jeon Chang-Hwan
    • Journal of Oriental Neuropsychiatry
    • /
    • v.12 no.2
    • /
    • pp.173-183
    • /
    • 2001
  • Substance P can stimulate secretion of tumor necrosis $factor-\;{\alpha}\;(TNF-\;{\alpha}\;)$ from astrocytes stimulated with lipopolysaccharide (LPS). Here I report that Chilbogeum can modulate cytokines secretion from primary cultures of rat astrocytes. Chilbogeum $(10\;{\mu}g/ml)$ significantly inhibited the $TNF-\;{\alpha}$ secretion by astrocytes stimulated with LPS and Substance P. Interleukin-1 (IL-1) has been shown to elevate $TNF-\;{\alpha}$ secretion from LPS-stimulated astrocytes while having no effect on astrocytes in the absence of LPS. Treatment of Chilbogeum $(10,\;100\;{\mu}g/ml)$ to astrocytes stimulated with both LPS and Substance P decreased IL-1 secretion significantly. The secretion of $TNF-\;{\alpha}$ by LPS and Substance P in astrocytes was progressively inhibited with increasing amount of IL-1 neutralizing antibody. Upon stimulation from various agents, these cells adopt a reactive phenotype, a morphological hallmark in Alzheimer's disease (AD) pathology, during which they themselves may produce still more inflammatory cytokines. Chilbogeum $(10,\;100\;{\mu}g/ml)$ significantly inhibited the $TNF-\;{\alpha}$ secretion by CCF-STTG1 astrocytoma cells stimulated with $A\;{\beta}$ and IL-1. These results suggest that Chilbogeum may inhibit $TNF-\;{\alpha}$ secretion by inhibiting IL-1 secretion and that Chilbogeum has an antiinflammatory activity in AD brain.

  • PDF