• Title/Summary/Keyword: Tumor metabolism

Search Result 231, Processing Time 0.035 seconds

Metabolic Challenges in Anticancer CD8 T Cell Functions

  • Andrea M. Amitrano;Minsoo Kim
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.9.1-9.15
    • /
    • 2023
  • Cancer immunotherapies continue to face numerous obstacles in the successful treatment of solid malignancies. While immunotherapy has emerged as an extremely effective treatment option for hematologic malignancies, it is largely ineffective against solid tumors due in part to metabolic challenges present in the tumor microenvironment (TME). Tumor-infiltrating CD8+ T cells face fierce competition with cancer cells for limited nutrients. The strong metabolic suppression in the TME often leads to impaired T-cell recruitment to the tumor site and hyporesponsive effector functions via T-cell exhaustion. Growing evidence suggests that mitochondria play a key role in CD8+ T-cell activation, migration, effector functions, and persistence in tumors. Therefore, targeting the mitochondrial metabolism of adoptively transferred T cells has the potential to greatly improve the effectiveness of cancer immunotherapies in treating solid malignancies.

Wheat Bran and Breast Cancer : Plausibility of the Estrogen Hypothesis

  • Cho, Susan-Sungsoo;Sharon Rickard;Chung, Chin-Eun
    • Nutritional Sciences
    • /
    • v.6 no.3
    • /
    • pp.160-166
    • /
    • 2003
  • To examine the evidence that wheat bran is protective against breast cancer development and that its main mechanism of action is by modulating estrogen metabolism. This review explores the role of different experimental factors on the anticancer effects of wheat bran and the relationship of changes to estrogen metabolism by wheat bran on breast cancer risk The timing of the experimental diets in relation to carcinogen administration, the length of feeding of the experimental diets, and the level of dietary fat had an impact on the effectiveness of different doses of wheat bran in reducing breast carcinogenesis. Wheat bran supplementation resulted in significant reductions in human plasma estrogen levels but not in that of animals tested. The change in excretory metabolism of estrogen by wheat bran feeding in animals was not related to any of the tumor indices measured. The protective effect of wheat bran in breast carcinogenesis is greatest at the promotional phase and when supplemented in a high fat diet. Doses of wheat bran in the 9-12% range in diet have been consistently protective. The inconsistency observed with higher doses of wheat bran may be dependent on the animal model used. Although wheat bran's inhibitory effects on tumor growth may involve changes to estrogen metabolism, the fiber and phytochemical components of wheat bran may also act through estrogen-independent mechanisms. For a better understanding of the effect of wheat bran on breast carcinogenesis, studies comparing the effects of different wheat bran components both alone and in combination need to be performed.

Cancer Energy Metabolism: Shutting Power off Cancer Factory

  • Kim, Soo-Youl
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.39-44
    • /
    • 2018
  • In 1923, Dr. Warburg had observed that tumors acidified the Ringer solution when 13 mM glucose was added, which was identified as being due to lactate. When glucose is the only source of nutrient, it can serve for both biosynthesis and energy production. However, a series of studies revealed that the cancer cell consumes glucose for biosynthesis through fermentation, not for energy supply, under physiological conditions. Recently, a new observation was made that there is a metabolic symbiosis in which glycolytic and oxidative tumor cells mutually regulate their energy metabolism. Hypoxic cancer cells use glucose for glycolytic metabolism and release lactate which is used by oxygenated cancer cells. This study challenged the Warburg effect, because Warburg claimed that fermentation by irreversible damaging of mitochondria is a fundamental cause of cancer. However, recent studies revealed that mitochondria in cancer cell show active function of oxidative phosphorylation although TCA cycle is stalled. It was also shown that blocking cytosolic NADH production by aldehyde dehydrogenase inhibition, combined with oxidative phosphorylation inhibition, resulted in up to 80% decrease of ATP production, which resulted in a significant regression of tumor growth in the NSCLC model. This suggests a new theory that NADH production in the cytosol plays a key role of ATP production through the mitochondrial electron transport chain in cancer cells, while NADH production is mostly occupied inside mitochondria in normal cells.

Mechanisms of Glucose Uptake in Cancer Tissue (악성종양의 포도당 섭취 기전)

  • Chung, June-Key
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 1999
  • Cancer cells are known to show increased rates of glycolysis metabolism. Based on this, PET studies using F-18-fluorodeoxyglucose have been used for the detection of primary and metastatic tumors. To account for this increased glucose uptake, a variety of mechanisms has been proposed. Glucose influx across the cell membrane is mediated by a family of structurally related proteins known as glucose transporters (Gluts). Among 6 isoforms of Gluts, Glut-1 and/or Glut-3 have been reported to show increased expression in various tumors. Increased level of Glut mRNA transcription is supposed to be the basic mechanism of Glut overexpression at the protein level. Some oncogens such as src or ras intensely stimulate Glut-1 by means of increased Glut-1 mRNA levels. Hexokinase activity is another important factor in glucose uptake in cancer cells. Especially hexokinase type II is considered to be involved in glycolysis of cancer cells. Much of the hexokinase of tumor cells is bound to outer membrane of mitochondria by the porin, a hexokinase receptor. Through this interaction, hexokinase may gain preferred access to ATP synthesized via oxidative phosphorylation in the inner mitochondria compartment. Other biologic factors such as tumor blood flow, blood volume, hypoxia, and infiltrating cells in tumor tissue are involved. Relative hypoxia may activate the anaerobic glycotytic pathway. Surrounding macrophages and newly formed granulation tissue in tumor showed greater glucose uptake than did viable cancer cells. To expand the application of FDG PET in oncology, it is important for nuclear medicine physicians to understand the related mechanisms of glucose uptake in cancer tissue.

  • PDF

Prognostic Significance of Sirtuins Expression in Papillary Thyroid Carcinoma

  • Kang, Yea Eun;Shong, Minho;Kim, Jin Man;Koo, Bon Seok
    • International journal of thyroidology
    • /
    • v.11 no.2
    • /
    • pp.143-151
    • /
    • 2018
  • Background and Objectives: Sirtuins (SIRTs) play important roles in cellular and organismal homeostasis. They have distinct gene expression patterns in various cancers; however, the relationship between SIRT expression and the progression of thyroid cancer is unclear. We investigated the expression of SIRTs in patients with papillary thyroid carcinoma (PTC) and their role as biomarkers for predicting the aggressiveness of this disease. Materials and Methods: We used immunohistochemical staining to evaluate the expression of SIRT1 and SIRT3 in tumor specimens from 270 patients with PTC. We also evaluated the potential association between SIRT expression and diverse clinicopathological features. Results: High SIRT1 expression was negatively correlated with lymphovascular invasion, central lymph node metastasis, and lateral lymph node metastasis. Multivariate analyses revealed that high SIRT1 expression was a negative independent risk factor for lateral lymph node metastasis. By contrast, high SIRT3 expression was positively correlated with locoregional recurrence. Interestingly, when patients were grouped by tumor SIRT expression patterns, the group with low SIRT1 expression and high SIRT3 expression was correlated with more aggressive cancer phenotypes including central lymph node metastasis and lateral lymph node metastasis. Conclusion: Our results suggest that SIRTs play dual roles in tumor progression, and the combination of decreased SIRT1 expression and increased SIRT3 expression is significantly associated with a poor prognosis in patients with PTC.

Long-term Observation of Gastric Adenocarcinoma of Fundic Gland Mucosa Type before and after Helicobacter pylori Eradication: a Case Report

  • Takahashi, Keitaro;Ueno, Nobuhiro;Sasaki, Takahiro;Kobayashi, Yu;Sugiyama, Yuya;Murakami, Yuki;Kunogi, Takehito;Ando, Katsuyoshi;Kashima, Shin;Moriichi, Kentaro;Tanabe, Hiroki;Kamikokura, Yuki;Yuzawa, Sayaka;Tanino, Mishie;Okumura, Toshikatsu;Fujiya, Mikihiro
    • Journal of Gastric Cancer
    • /
    • v.21 no.1
    • /
    • pp.103-109
    • /
    • 2021
  • Gastric adenocarcinoma of the fundic gland mucosa type (GA-FGM) was proposed as a new variant of gastric adenocarcinoma of the fundic gland type (GA-FG). However, at present, the influence of Helicobacter pylori and the speed of progression and degree of malignancy in GA-FGM remain unclear. Herein, we report the first case of intramucosal GA-FGM that was endoscopically observed before and after H. pylori eradication over 15 years. The lesion showed the same tumor size with no submucosal invasion and a low MIB-1 labeling index 15 years after its detection using endoscopy. The endoscopic morphology changed from 0-IIa before H. pylori eradication to 0-IIa+IIc and then 0-I after H. pylori eradication. These findings suggest that the unaltered tumor size reflects low-grade malignancy and slow growth, and that the endoscopic morphology is influenced by H. pylori eradication.

Metabolic Signaling to Epigenetic Alterations in Cancer

  • Kim, Jung-Ae;Yeom, Young Il
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.69-80
    • /
    • 2018
  • Cancer cells reprogram cellular metabolism to support the malignant features of tumors, such as rapid growth and proliferation. The cancer promoting effects of metabolic reprogramming are found in many aspects: generating additional energy, providing more anabolic molecules for biosynthesis, and rebalancing cellular redox states in cancer cells. Metabolic pathways are considered the pipelines to supply metabolic cofactors of epigenetic modifiers. In this regard, cancer metabolism, whereby cellular metabolite levels are greatly altered compared to normal levels, is closely associated with cancer epigenetics, which is implicated in many stages of tumorigenesis. In this review, we provide an overview of cancer metabolism and its involvement in epigenetic modifications and suggest that the metabolic adaptation leading to epigenetic changes in cancer cells is an important non-genetic factor for tumor progression, which cooperates with genetic causes. Understanding the interaction of metabolic reprogramming with epigenetics in cancers may help to develop novel or highly improved therapeutic strategies that target cancer metabolism.

Roles of Fibroblast Growth Factor-inducible 14 in Hepatocellular Carcinoma

  • Li, Nan;Hu, Wen-Jun;Shi, Jie;Xue, Jie;Guo, Wei-Xing;Zhang, Yang;Guan, Dong-Xian;Liu, Shu-Peng;Cheng, Yu-Qiang;Wu, Meng-Chao;Xie, Dong;Liu, Shan-Rong;Cheng, Shu-Qun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3509-3514
    • /
    • 2013
  • The prognostic value of the fibroblast growth factor-inducible 14 (Fn14) expression in hepatocellular carcinoma (HCC) is unknown. Real-time PCR (RT-PCR), western blot assays and immunohistochemistry analysis were here performed in order to compare Fn14 expressios in paired liver samples of HCC and normal liver tissue. Most of the tumor tissues expressed significantly higher levels of Fn14 compared to adjacent non-tumor tissues, with Fn14High accounting for 54.6% (142/260) of all patients. The Pearson ${\chi}^2$ test indicated that Fn14 expression was closely associated with serum alpha fetal protein (AFP) (P=0.002) and tumor number (p=0.019). Univariate and multivariate analyses revealed that along with tumor diameter and portal vein tumor thrombosis (PVTT ) type, Fn14 was an independent prognostic factor for both overall survival (OS) (HR=1.398, p=0.008) and recurrence (HR=1.541, p=0.001) rates. Fn14 overexpression HCC correlated with poor surgical outcome, and this molecule may be a candidate biomarker for prognosis as well as a target for therapy.

Characterization of Preclinical in Vitro and in Vivo Pharmacokinetic Properties of KPLA-012, a Benzopyranyl 1,2,3-Triazole Compound, with Anti-Angiogenetic and Anti-Tumor Progressive Effects

  • Nam, So Jeong;Lee, Taeho;Choi, Min-Koo;Song, Im-Sook
    • Mass Spectrometry Letters
    • /
    • v.9 no.2
    • /
    • pp.61-65
    • /
    • 2018
  • KPLA-012, a benzopyranyl 1,2,3-triazole compound, is considered a potent $HIF-1{\alpha}$ inhibitor based on the chemical library screening, and is known to exhibit anti-angiogenetic and anti-tumor progressive effects. The aim of this study was to investigate the pharmacokinetic properties of KPLA-012 in ICR mice and to investigate in vitro characteristics including the intestinal absorption, distribution, metabolism, and excretion of KPLA-012. The oral bioavailability of KPLA-012 was 33.3% in mice. The pharmacokinetics of KPLA-012 changed in a metabolism-dependent manner, which was evident by the low recovery of parent KPLA-012 from urine and feces and metabolic instability in the liver microsomes. However, KPLA-012 exhibited moderate permeability in Caco-2 cells ($3.1{\times}10^{-6}cm/s$) and the metabolic stability increased in humans compared to that in mice (% remaining after 1 h; 47.4% in humans vs 14.8% in mice). Overall, the results suggest that KPLA-012 might have more effective pharmacokinetic properties in humans than in mice although further studies on its metabolism are necessary.

Quantitative Analysis of PET Measurements in Tumors (종양학 분야에서 양전자방출촬영을 이용한 정량분석)

  • Choi, Chang-Woon
    • 대한핵의학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.60-65
    • /
    • 2001
  • The positron emission tomography (PET) has been used for the evaluation of the characteristics of various tumors. The role of PET in oncology has been evolved from a pure research tool to a methodology of enormous clinical potential. The unique characteristics of PET imaging make sophisticated quantitation possible. Several quantitative methods, such as standardized uptake values (SUV), simplified quantitative method, Patlak graphical analysis, and Sokoloff's glucose metabolism measurement, have been used in the field of oncology. However, each quantitative method has limitations of its own. For example, the SUV has been used as a quantitative index of glucose metabolism for tumor classification and monitoring response to treatment, even though it depends on blood glucose level, body configuration of patient, and scanning time. The quantitative methods of PET are reviewed and strategy for implementing these methods are presented.

  • PDF