• Title/Summary/Keyword: Tumor control

Search Result 2,023, Processing Time 0.023 seconds

Activation of NF-${\kappa}B$ in Lung Cancer Cell Lines in Basal and TNF-${\alpha}$ Stimulated States (폐암 세포에서 기저 상태와 TNF-${\alpha}$ 자극 시 NF-${\kappa}B$의 활성화)

  • HwangBo, Bin;Lee, Seung-Hee;Lee, Choon-Taek;Yoo, Chul-Gyu;Han, Sung-Koo;Shim, Young-Soo;Kim, Young-Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.5
    • /
    • pp.485-496
    • /
    • 2002
  • Background : The NF-${\kappa}B$ transcription factors control various biological processes including the immune response, acute phase reaction and cell cycle regulation. NF-${\kappa}B$ complexes are retained in the cytoplasm in the basal state and various stimuli cause a translocation of the NF-${\kappa}B$ complexes into the nucleus where they bind to the ${\kappa}B$ elements and regulate the transcription of the target genes. Recent reports also suggest that NF-${\kappa}B$ proteins are involved in oncogenesis, tumor growth and metastasis. High expression of NF-${\kappa}B$ expression was reported in many cancer cell lines and tissues. The constitutive activation of NF-${\kappa}B$ was also reported in several cancer cell lines supporting its role in cancer development and survival. The anti-apoptotic action of NF-${\kappa}B$ is important for cancer survival. NF-${\kappa}B$ also controls the expression of several proteins that are important for cellular adhesion (ICAM-1, VCAM-1) suggesting a role in cancer metastasis. In lung cancer, high expression levels of the NF-${\kappa}B$ subunit p50 and c-Rel were reported. In fact, high expression does not mean a high activity, and the activation pattern of NF-${\kappa}B$ in lung cancer has not been reported. Materials and Methods : In this study, the NF-${\kappa}B$ nuclear binding activity in the basal and TNF-${\alpha}$ stimulated states were exmined in various lung cancer cell lines and compared with the normal bronchial epithelial cell line. Twelve lung cancer cell lines including the non-small cell and small cell lung cancer cell lines (A549, NCI-H358, NCI-H441, NCI-H552, NCI-H2009, NCI-H460, NCI-H1229, NCI-H1703, NCI-H157, NCI-H187, NCI-H417, NCI-H526) and BEAS-2B bronchial epithelial cell line were used. To evaluate the NF-${\kappa}B$ expression and DNA binding activity, western blot analysis and an electrophoretic mobility shift assay with the nuclear protein extracts. Results : The basal expressions of the p65 and p50 subunits were observed in the BEAS-2B cell line and all lung cancer cell lines except for NCI-H358 and NCI-H460. The expression levels of p65 and p50 were increased 30 minutes after stimulation with TNF-${\alpha}$ in BEAS-2B and in 10 lung cancer cell lines. In the NCI-H358 and NCI-H460 cell lines, p65 expression was not observed in the basal and stimulated states and the two p50 related protein levels were higher after stimulation with TNF-${\alpha}$ These new proteins were smaller than p50 and are thought to be variants of p50. In the basal state, NF-${\kappa}B$ was nearly activated in the BEAS-2B and all lung cancer cell lines. The DNA binding activity of the NF-${\kappa}B$ complexes was markedly higher after stimulation with TNF-${\alpha}$ In the BEAS-2B and all lung cancer cell line except for NCI-H358 and NCI-H460, the activated NF-${\kappa}B$ complex was a p65/p50 heterodimer. In the NCI-H358 and NCI-H460 lung cancer cell lines, the NF-${\kappa}B$ complex was variant of a p50/p50 homodimer. Conclusion : The NF-${\kappa}B$ activation pattern in the lung cancer cell lines and the normal bronchial epithelial cell lines was similar except for the activation of a variant of the p50/p50 homodimer in some lung cancer cell linse.

The Effect of Nitric Oxide Donor or Nitric Oxide Synthase Inhibitor on Oxidant Injury to Cultured Rat Lung Microvascular Endothelial Cells (산화질소 공여물과 산화질소 합성효소 길항제가 백서 폐미세혈관 내피세포 산화제 손상에 미치는 영향)

  • Chang, Joon;Michael, John R.;Kim, Se-Kyu;Kim, Sung-Kyu;Lee, Won-Young;Kang, Kyung-Ho;Yoo, Se-Hwa;Chae, Yang-Seok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.6
    • /
    • pp.1265-1276
    • /
    • 1998
  • Background : Nitric oxide(NO) is an endogenously produced free radical that plays an important role in regulating vascular tone, inhibition of platelet aggregation and white blood cell adhesion to endothelial cells, and host defense against infection. The highly reactive nature of NO with oxygen radicals suggests that it may either promote or reduce oxidant-induced cell injury in several biological pathways. Oxidant injury and interactions between pulmonary vascular endothelium and leukocytes are important in the pathogenesis of acute lung injury, including acute respiratory distress syndrome(ARDS). In ARDS, therapeutic administration of NO is a clinical condition providing exogenous NO in oxidant-induced endothelial injury. The role of exogenous NO from NO donor or the suppression of endogenous NO production was evaluated in oxidant-induced endothelial injury. Method : The oxidant injury in cultured rat lung microvascular endothelial cells(RLMVC) was induced by hydrogen peroxide generated from glucose oxidase(GO). Cell injury was evaluated by $^{51}$chromium($^{51}Cr$) release technique. NO donor, such as S-nitroso-N-acetylpenicillamine(SNAP) or sodium nitroprusside(SNP), was added to the endothelial cells as a source of exogenous NO. Endogenous production of NO was suppressed with N-monomethyl-L-arginine(L-NMMA) which is an NO synthase inhibitor. L-NMMA was also used in increased endogenous NO production induced by combined stimulation with interferon-$\gamma$(INF-$\gamma$), tumor necrosis factor-$\alpha$(TNF-$\alpha$), and lipopolysaccharide(LPS). NO generation from NO donor or from the endothelial cells was evaluated by measuring nitrite concentration. Result : $^{51}Cr$ release was $8.7{\pm}0.5%$ in GO 5 mU/ml, $14.4{\pm}2.9%$ in GO 10 mU/ml, $32.3{\pm}2.9%$ in GO 15 mU/ml, $55.5{\pm}0.3%$ in GO 20 mU/ml and $67.8{\pm}0.9%$ in GO 30 mU/ml ; it was significantly increased in GO 15 mU/ml or higher concentrations when compared with $9.6{\pm}0.7%$ in control(p < 0.05; n=6). L-NMMA(0.5 mM) did not affect the $^{51}Cr$ release by GO. Nitrite concentration was increased to $3.9{\pm}0.3\;{\mu}M$ in culture media of RLMVC treated with INF-$\gamma$ (500 U/ml), TNF-$\alpha$(150 U/ml) and LPS($1\;{\mu}g/ml$) for 24 hours ; it was significantly suppressed by the addition of L-NMMA. The presence of L-NMMA did not affect $^{51}Cr$ release induced by GO in RLMVC pretreated with INF-$\gamma$, TNF-$\alpha$ and LPS. The increase of $^{51}Cr$ release with GO(20 mU/ml) was prevented completely by adding 100 ${\mu}M$ SNAP. But the add of SNP, potassium ferrocyanate or potassium ferricyanate did not protect the oxidant injury. Nitrite accumulation was $23{\pm}1.0\;{\mu}M$ from 100 ${\mu}M$ SNAP at 4 hours in phenol red free Hanks' balanced salt solution. But nitrite was not detectable from SNP upto 1 mM The presence of SNAP did not affect the time dependent generation of hydrogen peroxide by GO in phenol red free Hanks' balanced salt solution. Conclusion : Hydrogen peroxide generated by GO causes oxidant injury in RLMVC. Exogenous NO from NO donor prevents oxidant injury, and the protective effect may be related to the ability to release NO. These results suggest that the exogenous NO may be protective on oxidant injury to the endothelium.

  • PDF

Anti-inflammatory Effects of Pentoxifylline and Neutrophil Elastase Inhibitor on Lipopolysaccharide-Induced Acute Lung Injury In Vitro (In Vitro 내독소 유도성 급성 폐손상에서 Pentoxifylline과 Neutrophil Elastase Inhibitor의 항염효과)

  • Kim, Young-Kyoon;Kim, Seung-Joon;Park, Yong-Keun;Kim, Seok-Chan;Kim, Kwan-Hyoung;Moon, Hwa-Sik;Song, Jeong-Sup;Park, Sung-Hak;Kim, Sang-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.6
    • /
    • pp.691-702
    • /
    • 2000
  • Background : Acute lung injury (ALI) is a commonly encountered respiratory disease and its prognosis is poor when the treatment is not provided promptly and properly. However no specific pharmacologic treatment is currently available for ALI, although recently several supportive drugs have been under scrutiny. We studied anti-inflammatory effects of pentoxifylline (PF), a methylated xanthine, and ONO-5046, a synthetic neutrophil elastase inhibitor on lipopolysaccharide (LPS)-induced ALI in vitro. Methods : To establish an in vitro model of LPS-induced ALI, primary rat alveolar macrophages and peripheral neutrophils in various ratios (1:0, 5:1, 1:1, 1:5, 0:1) were co-cultured with transformed rat alveolar epithelial cells (L2 cell line) or vascular endothelial cells (IP2-E4 cell line) under LPS stimulation. Each experiment was divided into five groups-control, LPS, LPS+PF, LPS+ONO, and LPS+PF+ONO. We compared LPS-induced superoxide anion productions from primary rat alveolar macrophages and peripheral neutrophils in various ratios, and the resultant cytotoxicity on L2 cells or IP2-E4 cells between groups. In addition we also compared the productions of tumor necrosis factor (TNF)-$\alpha$ interleukin (IL)-$1{\beta}$, monocyte chemotactic protein(MCP)-1, IL-6, and IL-10 as well as mRNA expressions of TNF-$\alpha$ inducible nitric oxide synthetase(iNOS), and MCP-1 from LPS-stimulated primary rat alveolar macrophages between groups. Results : (1) PF and ONO-5046 in each or both showed a trend to suppress LPS-induced superoxide anion productions from primary rat alveolar macrophages and peripheral neutrophils regardless of their ratio, except for the LPS+PF+ONO group with the 1:5 ratio, although statistical significance was limited to a few selected experimental conditions. (2) PF and ONO-5046 in each or both showed a trend to prevent IP2-E4 cells from LPS-induced cytotoxicity by primary rat alveolar macrophages and peripheral neutrophils regardless their ratio, although statistical significance was limited to a few selected experimental conditions. the effects of PF and/or ONO-5046 on LPS-induced L2 cell cytotoxicity varied according to experimental conditions. (3) PF showed a trend to inhibit LPS-induced productions of INF-$\alpha$ MCP-1, and IL-10 from primary rat alveolar macrophages. ONO-5046 alone didnot affect the LPS-induced productions of proinflammatory cytokines from primary rat alveolar macrophages but the combination of PF and ONO-5046 showed a trend to suppress LPS-induced productions of INF-$\alpha$ and IL-10 PF and ONO-5046 in each or both showed a trend to increase LPS-induced IL-$\beta$ and IL-6 productions from primary rat alveolar macrophages. (4) PF and ONO-5046 in each or both showed a trend to attenuate LPS-induced mRNA expressions of TNF-$\alpha$ and MCP-1 from primary rat alveolar macrophages but at the same time showed a trend increase iNOS mRNA expression. Conclusion : These results suggest that PF and ONO-5046 may play a role in attenuating inflammation in LPS-induced ALI and that further study is needed to use these drugs as a new supportive therapeutic strategy for ALI.

  • PDF