• Title/Summary/Keyword: Tumor Suppressor Genes

Search Result 176, Processing Time 0.031 seconds

Enhanced Growth Inhibition by Combined Gene Transfer of p53 and $p16^{INK4a}$ in Adenoviral Vectors to Lung Cancer Cell Lines (폐암세포주에 대한 p53 및 $p16^{INK4a}$의 복합종양억제유전자요법의 효과)

  • Choi, Seung -Ho;Park, Kyung-Ho;Seol, Ja-Young;Yoo, Chul-Gyu;Lee, Choon-Taek;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.1
    • /
    • pp.67-75
    • /
    • 2001
  • Background : Two tumor suppressor genes, p53 and p16, which have different roles in controlling the cell cycle and inducing apoptosis, are frequently inactivated during carcinogenesis including lung cancer. Single tumor suppressor gene therapies using either with p53 or p16 have been studied extensively. However, there is a paucity of reports regarding a combined gene therapy using these two genes. Methods : The combined effect of p53 and p16 gene transfer by the adenoviral vector on the growth of lung cancer cell lines and its interactive mechanism was investigated. Results : An isobologram showed that the co-transduction of p53 and p16 exhibited a synergistic growth in hibitory effect on NCI H358 and an additive effect on NCI H23. Cell cycle analysis demonstrated the induction of a synergistic G1/S arrest by a combined p53 and p16 transfer. This synergistic interaction was again confirmed in a soft agar confirmed in a soft agar clonogenic assay. Conclusion : These observations suggest the potential of a p53 and p16 combination gene therapy as another potent strategy in cancer gene therapy.

  • PDF

Effect of Gamisamgibopae-tang on the Growth and Apoptosis of A539 and NCI-H460 Human Lung Cancer Cells (A539 및 NCI-H460 인체 폐암세포의 증식 및 apoptosis 유도에 미치는 가미삼기보폐탕의 영향)

  • Kim, Jin-Young;Kim, Hyun-Joong;Jung, Kwang-Sik;Park, Cheol;Choi, Yung-Hyun;Kam, Cheol-Woo;Park, Dong-Il
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.130-148
    • /
    • 2008
  • Objective : This study was designed to investigate the effect of the water extract of Gamisamgibopae-tang(GMSGBPT), an oriental herbal formulation, on the growth of NCI-H460 and A549 human non-small-cell lung cancer cell lines. Methods : Cytotoxicity and cell morphology were evaluated by MTT assay and inverted microscope, respectively. Apoptosis was detected using agarose gel electrophoresis and flow cytometer. The expression levels of mRNAs and proteins of target genes were determined by RT-PCR and western blot analyses, respectively Result and Conclusion : We found that exposure of A549 cells to GMSGBPT resulted in the growth inhibition in a dose-dependent manner as measured by MTT assay, but GMSGBPTdid not affect the growth of NCI-H460 cells. The anti-proliferative effect of GMSGBPT treatment in A549 cells was associated with morphological changes, formation of apoptotic bodies and DNA fragmentation, and flow cytometry analysis confirmed that GMSGBPT treatment increased the populations of apoptotic-sub G1 phase. Growth inhibition and apoptotic cell death by GMSGBPT were connected with a up-regulation of cyclin-dependent kinase inhibitor p21 (WAF1/CIP1) mRNA and protein in a tumor suppressor p53-independent fashion. However GMSGBPT treatment did not affect other growth regulation-related genes such as early growth response-1 (Egr-1), nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1), inducible nitric oxide synthase (iNOS), cyclooxygenases (COXs), telomere-regulatory factors in A549 orNCI-H460 cells. Taken together, these findings partially provide novel insights into the possible molecular mechanism of the anti-cancer activity of GMSGBPT.

  • PDF

DOX-MTX-NPs Augment p53 mRNA Expression in OSCC Model in Rat: Effects of IV and Oral Routes

  • Abbasi, Mehran Mesgari;Khiavi, Monir Moradzadeh;Monfaredan, Amir;Hamishehkar, Hamed;Seidi, Khaled;Jahanban-Esfahlan, Rana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8377-8382
    • /
    • 2014
  • Background: Oral squamous cell carcinoma (OSCC) is the sixth most common malignancy worldwide. Cancer development and progression require inactivation of tumor suppressor genes and activation of proto-oncogenes. The well recognized mechanism of action demonstrated for chemotherapeutic agents is induction of apoptosis via reactivation of p53. In this context, we evaluate the efficacy of IV and oral routes of our novel PH and temperature sensitive doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NP) in affecting p53 profile in an OSCC rat model. Methods: In this study, 120 male rats were divided into 8 groups of 15 animals each. The new formulated DOX-MTX NP and free doxorubicin were IV and orally given to rats with 4-nitroquinoline-1-oxide induced OSCC. Results: Results showed that both DOX and DOX-MTX-NP caused significant increase in mRNA levels of P53 compared to the untreated group (p<0.000). With both DOX and DOX-MTX NP, the IV mode was more effective than the oral (gavage) route (p<0.000). Surprisingly, in oral mode, p53 mRNA was not affected in DOX treated groups (p>0.05), Nonetheless, both IV and oral administration of MTX-DOX NP showed superior activity (~3 fold) over free DOX in reactivation of p53 in OSCC (p<0.000). The effectiveness of oral route in group treated with nanodrug accounts for the enhanced bioavailability of nanoparticulated DOX-MTX compared to free DOX. Moreover, in treated groups, tumor stage was markedly related to the amount of p53 mRNA (p<0.05). Conclusion: Both oral and IV application of our novel nanodrug possesses superior activity over free DOX-in up-regulation of p53 in a OSCC model and this increase in p53 level associated with less aggressive tumors in our study. Although, impressive results obtained with IV form of nanodrug (-21 fold increase in p53 mRNA level) but both forms of nanodrug are effective in OSCC, with less toxicity normal cells.

No Relationship between the Amount of DNA Damage and the Level of hMLH1 and RASSF1A Gene Expression in Bladder Cancer Cells Treated with Cisplatin and Gemcitabine

  • de Camargo, Elaine Aparecida;da Silva, Glenda Nicioli;Gobette, Camila Pereira;de Castro Marcondes, Joao Paulo;Salvadori, Daisy Maria Favero
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5941-5948
    • /
    • 2013
  • Tumor response to antineoplastic drugs is not always predictable. This is also true for bladder carcinoma, a highly recurrent neoplasia. Currently, the combination of cisplatin and gemcitabine is well accepted as a standard protocol for treating bladder carcinoma. However, in some cases, this treatment protocol causes harmful side effects. Therefore, we investigated the roles of the genes TP53, RASSF1A (a tumor suppressor gene) and hMLH1 (a gene involved in the mismatch repair pathway) in cell susceptibility to cisplatin/gemcitabine treatment. Two bladder transitional carcinoma cell (TCC) lines, RT4 (wild-type TP53) and 5637 (mutated TP53), were used in this study. First, we evaluated whether the genotoxic potential of cisplatin/gemcitabine was dependent on TP53 status. Then, we evaluated whether the two antineoplastic drugs modulated RASSF1A and hMLH1 expression in the two cell lines. Increased DNA damage was observed in both cell lines after treatment with cisplatin or gemcitabine and with the two drugs simultaneously, as depicted by the comet assay. A lack of RASSF1A expression and hypermethylation of its promoter were observed before and after treatment in both cell lines. On the other hand, hMLH1 downregulation, unrelated to methylation status, was observed in RT4 cells after treatment with cisplatin or with cisplatin and gemcitabine simultaneously (wild-type TP53); in 5637 cells, hMLH1 was upregulated only after treatment with gemcitabine. In conclusion, the three treatment protocols were genotoxic, independent of TP53 status. However, cisplatin was the most effective, causing the highest level of DNA damage in both wild-type and mutated TP53 cells. Gemcitabine was the least genotoxic agent in both cell lines. Furthermore, no relationship was observed between the amount of DNA damage and the level of hMLH1 and RASSF1A expression. Therefore, other alternative pathways might be involved in cisplatin and gemcitabine genotoxicity in these two bladder cancer cell lines.

The Relationship between the Polymorphism of CYP1A1, GSTM1, GSTT1, GSTP1 and p53 Overexpression in Head and Neck Squamous Cell Carcinoma (두경부 편평세포암종에서 CYP1A1, GSTM1, GSTT1, GSTP1 유전자 다형성 및 p53 과발현)

  • Tae Kyung;Park Hye-Kyung;Lee Seung-Hwan;Kim Kyung-Rae;Lee Hyung-Seok
    • Korean Journal of Head & Neck Oncology
    • /
    • v.19 no.2
    • /
    • pp.148-157
    • /
    • 2003
  • Background and Objectives: Individual genetic susceptibilities to chemical carcinogens have been recognized as a major important host factors in human cancers. The cytochrome P450 family (CYPs) and glutathione S-transferase(GST) have been reported to be associated with risks to the smoking-related human cancers. Inactivation of tumor suppressor genes like p53 playa key role in tumor progression. The purpose of this study is to demonstrate an association between p53 overexpression and the prevalence of the genetic polymorphisms of CYP1A1 and GSTs in Korean head and neck squamous cell carcinoma (HNSCC). Materials and Methods: The polymorphisms of CYPIA1 and GSTs were analyzed by PCR and PCR-RFLP in 98 Korean head and neck squamous cell carcinoma patients. The expression of p53 was analyzed by immunohistochemistry with anti-p53 Ab (DO7). Results: Overexpression of p53 detected in 45.9% of HNSCC. The odds ratio for p53 overexpression in GSTM1(-), GSTT1(-), GSTP1(val/val) and CYP1A1(val/val) were 1.53, 1.83, 1.17 and 1.47, respectively. Among the combined genotypes, the odds ratio of the CYP1A1 val/val, GSTM1 (-), CYP1A1 val/val, GSTT1(-), and CYP1A1 val/val, GSTT1(-) were 2.0, 2.34 and 4.68, respectively. Conclusion: Based on our results, it might be suggested that p53 overexpression is slightly increased in GSTM1(-), GSTT1(-), GSTP1 val/val, CYP1A1 val/val genotypes. The further study is needed to evaluate the relationship and mechanism between the p53 overexpression and the specific CYP1A1 and GSTs genotypes.

Perspectives on Glutaminase Inhibitors as Metabolic Anti-cancer Agents (Glutamine 대사항암제의 개발과 전망)

  • Ho-Yeon Jeon;Chae-Ryeong Seo;Jaeho Bae;Soon-Cheol Ahn
    • Journal of Life Science
    • /
    • v.34 no.10
    • /
    • pp.744-754
    • /
    • 2024
  • Cancer cells exhibit a unique metabolic process for uncontrolled cell division, providing bioenergy and intermediates, which are significantly different from normal cells. Here an aerobic glycolysis converts most of the pyruvate produced from glucose into lactate and inefficiently produced ATP. Cancer cells counter their lack of energy through glutamine metabolism, together with glucose. Glutamine is the most abundant amino acid in the blood and is used for the synthesis of amino acids, nucleotides, and lipids, as well as bioenergy through glutaminolysis. Cancer cells rely on glutamine rather than normal cells, showing more than half of the tricarboxylic acid cycle metabolites derived from glutamine, called glutamine addiction. Oncogenes c-Myc also regulates the expression of various genes involved in glutamine metabolism and promotes the absorption of glutamine. Whether glutaminase (GLS) causes or inhibits tumors is controversial. However, GLS1 is a promising treatment target due to its higher carcinogenic incidence, whereas GLS2 is known to act as a tumor suppressor. The 4th-generation metabolic anti-cancer therapy, which has been actively investigated since the mid-2010s, is based on a complex and sophisticated network of cancer metabolites. These drugs directly regulate the energy metabolism of cancer cells to maximize anti-cancer effects without side effects. GLS is a crucial enzyme for cancer metabolism and tumor progression that catalyzes the first stage in the process of glutaminolysis. The development of anti-cancer drugs targeting GLS enzymes has emerged as a promising strategy.

Development of a Window Program for Searching CpG Island (CpG Island 검색용 윈도우 프로그램 개발)

  • Kim, Ki-Bong
    • Journal of Life Science
    • /
    • v.18 no.8
    • /
    • pp.1132-1139
    • /
    • 2008
  • A CpG island is a short stretch of DNA in which the frequency of the CG dinucleotide is higher than other regions. CpG islands are present in the promoters and exonic regions of approximately $30{\sim}60$% of mammalian genes so they are useful markers for genes in organisms containing 5-methylcytosine in their genomes. Recent evidence supports the notion that the hypermethylation of CpG island, by silencing tumor suppressor genes, plays a major causal role in cancer, which has been described in almost every tumor types. In this respect, CpG island search by computational methods is very helpful for cancer research and computational promoter and gene predictions. I therefore developed a window program (called CpGi) on the basis of CpG island criteria defined by D. Takai and P. A. Jones. The program 'CpGi' was implemented in Visual C++ 6.0 and can determine the locations of CpG islands using diverse parameters (%GC, Obs (CpG)/Exp (CpG), window size, step size, gap value, # of CpG, length) specified by user. The analysis result of CpGi provides a graphical map of CpG islands and G+C% plot, where more detailed information on CpG island can be obtained through pop-up window. Two human contigs, i.e. AP00524 (from chromosome 22) and NT_029490.3 (from chromosome 21), were used to compare the performance of CpGi and two other public programs for the accuracy of search results. The two other programs used in the performance comparison are Emboss-CpGPlot and CpG Island Searcher that are web-based public CpG island search programs. The comparison result showed that CpGi is on a level with or outperforms Emboss-CpGPlot and CpG Island Searcher. Having a simple and easy-to-use user interface, CpGi would be a very useful tool for genome analysis and CpG island research. To obtain a copy of CpGi for academic use only, contact corresponding author.

Association between RASSF1A Methylation and Clinicopathological Factors in Patients with Squamous Cell Carcinoma of Lung (편평상피폐암에서 암억제유전자 RASSF1A의 메틸화와 임상 및 병리소견과의 연관성)

  • Choi, Naeyun;Lee, Hye-Sook;Song, In Seung;Lim, Yu Sung;Son, Dae-Soon;Lim, Dae-Sik;Choi, Yong Soo;Kim, Jhingook;Kim, Hojoong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.3
    • /
    • pp.265-272
    • /
    • 2004
  • Background : RASSF1A, which is one of tumor suppressor genes, is frequently inactivated by hypermethylation of the promoter region in a variety of human cancers, including lung cancer. This study was performed to investigate the association between RASSF1A methylation and the clinicopathological factors in patients with squamous cell carcinoma of the lung. Methods : Eighty-one samples from the patients with squamous cell carcinoma of lung were examined. The promoter methyation of RASSF1A was analyzed by methylation specific PCR and sequencing. Statistical analysis was made to examine the association between RASSF1A methylation and the clinicopathological parameters. Results : RASSF1A methylation was observed in 37.0 % (30 of 81) of the patients with squamous cell carcinoma of the lung. RASSF1A methylation was found to be associated with cellular differentiation(p=0.0097) and the overall survival(p=0.0635). However, there was no association between RASSF1A methylation and the other clinicopathological parameters, such as the pathological TNM stage, the recurrence rate, lymph node invasion and the amount of cigarettes smoked. Conclusion : RASSF1A methylation might be associated with a poor prognosis in patients with squamous carcinoma of the lung. A larger scale study is needed.

Dependency on p53 in Expression Changes of ATF3 and NAG-1 Induced by EGCG, Genistein, and Resveratrol (EGCG, genistein, resveratrol 처리에 의한 ATF3와 NAG-1 유전자 발현변화의 p53 의존성 분석)

  • Kim, Min-Jeong;Kim, Hyun-Ji;Seo, Yu-Mi;Lee, Eun-Joo;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.615-620
    • /
    • 2018
  • Epigallocatechin-3-gallate (EGCG), one of catechins of green tea, has been known to possess anti-oxidation, anti-inflammation, and anti-cancer effects. The present study analyzed global gene expression changes in EGCG-treated HCT116 cells and p53-null HCT116 cells by oligo DNA microarray analysis. Among the differentially expressed genes in EGCG-treated HCT116 cells, four were selected that are known as tumor suppressor genes (activating transcription factor 3 [ATF3], cyclin dependent kinase inhibitor 1A [CDKN1A], DNA damage-inducible transcript 3 [DDIT3] and non-steroidal anti-inflammatory drug activated gene [NAG-1]) and their expression was compared to the expression of genes in p53-null HCT116 cells. We found that the expression of these genes was not dependent on their p53 status except for NAG-1, which was only up-regulated in HCT116. The results of RT-PCR and Western blot analysis showed that ATF3 up-regulation by EGCG was not affected by the presence of p53, whereas NAG-1 expression was not induced in p53-null HCT116 cells. We also detected ATF3 and NAG-1 expression changes through genistein and resveratrol treatment. Interestingly, genistein could not up-regulate ATF3 regardless of p53 status, but genistein could induce NAG-1 only in HCT116 cells. Resveratrol could significantly induce NAG-1 as well as ATF3 independent of p53 presence. These results indicate that EGCG, genistein and resveratrol may have different anti-cancer effects. Overall, the results of this study may help to increase our understandings of molecular mechanisms on anti-cancer activities mediated by EGCG, genistein and resveratrol in human colorectal cancer cells.

Impact of AhR, CYP1A1 and GSTM1 Genetic Polymorphisms on TP53 R273G Mutations in Individuals Exposed to Polycyclic Aromatic Hydrocarbons

  • Gao, Meili;Li, Yongfei;Xue, Xiaochang;Long, Jiangang;Chen, Lan;Shah, Walayat;Kong, Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2699-2705
    • /
    • 2014
  • This study was to undertaken to investigate the impacts of AhR, CYP1A1, GSTM1 genetic polymorphisms on the R273G mutation in exon 8 of the tumor suppressor p53 gene (TP53) among polycyclic aromatic hydrocarbons (PAHs) exposed to coke-oven workers. One hundred thirteen workers exposed to PAH and 82 control workers were recruited. We genotyped for polymorphisms in the AhR, CYP1A1, GSTM1, and TP53 R273G mutation in blood by PCR methods, and determined the levels of 1-hydroxypyrene as PAH exposure marker in urine using the high pressure liquid chromatography assay. We found that the distribution of alcohol users and the urinary excretion of 1-OHP in the exposed workers were significantly higher than that of the control workers (p=0.004, p<0.001, respectively). Significant differences were observed in the p53 genotype distributions of smoking subjects (p=0.01, 95%CI: 1.23-6.01) and PAH exposure (p=0.008, 95%CI: 1.24-4.48), respectively. Further, significant differences were observed in the p53 exon 8 mutations for the genetic polymorphisms of Lys/Arg for AhR (p=0.02, 95%CI: 0.70-15.86), Val/Val for CYP1A1 (p=0.04, 95%CI: 0.98-19.09) and null for GSTM1 (p=0.02, 95%CI: 1.19-6.26), respectively. Our findings indicated that polymorphisms of PAH metabolic genes, such as AhR, CYP1A1, GSTM1 polymorphisms may interact with p53 genetic variants and may contribute to PAH related cancers.