• Title/Summary/Keyword: Tubular surface

Search Result 178, Processing Time 0.026 seconds

Hydroforming of a Non-axisymmetric Thin-walled Tubular Component with Variable Cross Sections (가변 단면을 가지는 비대칭 얇은 관 부품의 액압성형 연구)

  • Kang, H.S.;Joo, B.D.;Hwang, T.W.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.368-374
    • /
    • 2015
  • Hydroforming of a non-axisymmetric thin-walled tubular component with variable cross sections was analyzed. In order to solve the sealing problem which occurred due to the thin and non-axisymmetric shape, the use of a lead patch on the punch, which had been successful in hydroforming of thin tubes, was evaluated. A lead patch was attached to the punch to solve the sealing problem, which was caused by the stress gradient in the non-axisymmetric shape. FEM and experiments were also performed to analyze these sealing problems associated with the punch shape and non-axisymmetric shape. Finally, the lead patch was attached at tube surface where intensive local strain concentration would occur to enhance the hydroformability. These methods were successfully used to fabricate non-axisymmetric thin-walled tubular component with variable cross sections that had previously failed during traditional hydroforming.

Establishment of Fracture Mechanics Fatigue Life Analysis Procedures for Offshore Tubular Joints -part II : Fatigue Life Analysis for a Multi-Plan Tubular Joint (해양구조물의 원통형 조인트에 대한 파괴역학적 피로수명 산출방법의 설정)

  • Rhee, H. C.
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.87-100
    • /
    • 1989
  • 해양구조물의 원통형 조인트에 대한 파괴역학적 피로수명 산출방법이 개발되었다. 개발된 방법을 이용해서 2평면 K형 조인트에 대한 피로수명을 구체적인 파괴역학적 방법으로 산출 하였다. 이 분석을 위해 용접부위 표면균열의 응력확대 계수를 3차원 유한요소법에 의해 계산하였다. 계산된 결과에 의하면 용접부위 표면균열 첨단은 단순한 Mode I형태를 보이지 않고 Mode I, II, III이 복합된 형태임이 입증되었다. 계산된 응력확대 계수를 사용해서 16개의 용접부위균열 성장형태를 일반적인 피로균열 성장법칙을 적용해서 계산하였고, 균열성장의 안정분석을 통해 각 균열의 최종 파괴상태를 파괴해석도면(failure assessment diagram)법을 이용해서 계산하였다.

  • PDF

Non-tubular bonded joint under torsion: Theory and numerical validation

  • Pugno, Nicola;Surace, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.125-138
    • /
    • 2000
  • The paper analyzes the problem of torsion in an adhesive non-tubular bonded single-lap joint. The joint considered consists of two thin rectangular section beams bonded together along a side surface. Assuming the materials involved to be governed by linear elastic laws, equilibrium and compatibility equations were used to arrive at an integro-differential relation whose solution makes it possible to determine torsional moment section by section in the bonded joint between the two beams. This is then used to determine the predominant stress and strain field at the beam-adhesive interface (stress field along the direction perpendicular to the interface plane, equivalent to the applied torsional moment and the corresponding strain field) and the joint's elastic strain (absolute and relative rotations of the bonded beam cross sections). All the relations presented were obtained in closed form. Results obtained theoretically are compared with those given by a three dimensional finite element numerical model. Theoretical and numerical analysis agree satisfactorily.

An experimental study on the effects of internal tubular coatings on mitigating wax deposition in offshore oil production

  • Jung, Sun-Young;Kang, Pan-Sang;Lim, Jong-Se
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1333-1339
    • /
    • 2014
  • As the demand for petroleum resources increases, and oilfields on lands and in shallow-sea become exhausted, the areas for oil production are expanding to the deep sea and therefore technologies for flow assurance are coming into the highlight. In low temperature environment such as the deep sea, wax is accumulated and prevents stable oil production. Therefore, the development of flow assurance technologies is required. Wax is precipitated in crystalline form when the oil temperature decreases below the wax appearance temperature; it then accumulates on the inner walls of pipelines causing blockages. In particular, in subsea pipelines, which have a large surface contact area with the surrounding seawater, wax deposition problems are frequent. The internal tubular coating can effectively reduce wax deposition without pausing oil production when the coating is appropriately designed. This study carried out wax deposition tests on a number of internal tubular coatings under single flow conditions. The results were analyzed for the effects that the physical properties of the coatings had on wax deposition.

An Analytic study on the bond of the contact surface in CFT tubular column (중심축하중을 받는 CFT 합성기둥의 접촉면 부착에 관한 해석적 연구)

  • Ye, Sang-Min;Lee, Soo-Young;Kim, Yun-Tae;Park, Seoug-Moo
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.205-212
    • /
    • 2005
  • In order for utilization of the concrete filled tubular, It Is necessary to scrutinize interfacial characteristics between heterogeneous materials, and be performed to various analytical studies on the composite structure. In this paper, this analytic study is carried on using ABAQUS Package/ Version 5.8-1, and the variables aye the relations between the coefficient of friction and the contact pressure for analyzing the behavior on the contact surface, through modifying the analytic methods and improving some problems. It is used to subdivided analytical methods in this research which categorize into four regions and can obtain closer effect for the bond behavior. Four categories compose of the chemical bond and mechanical bond legions replaced the full-interaction before yielding, and the pure friction and moving-down regions after yielding.

  • PDF

Stress acting on surface of the sleeve in tubular type linear motors due to pulsed input (원형코일형 선형모타에서의 충격입력에 의한 가동자 표면응력)

  • Kim, Gi-Bong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.33-35
    • /
    • 1995
  • Tubular coils are widely used in various electromagnetic applications. For the purpose to obtain the mechanical output power, one of the two sets of coil arrays, called drive, is generally fixed while the other, called sleeve or projectile, is not fixed and easy to move. Among the three force components acting on the coil arrays, the radial one used to affect as a stress on the surfiace of the sleeve, or a restoring force if it is off-centered. The system under transient state or intended pulsed input power is likely to have the worst condition in mechanical stress, and it is necessary to design the mechanical strength of the sleeve within the permanent deformation limit. This paper is focused on the presentation of analytic expressions for the stress on surface of the sleeve.

  • PDF

Selective Dissolution of ZnO Crystal by a Two-step Thermal Aging in Aqueous Solution (수용액 합성법의 2단계 성장온도 변화를 통한 ZnO 결정의 선택적 용해 현상)

  • Kim, Jeong-Seog;Chae, Ki-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.263-268
    • /
    • 2011
  • ZnO hexagonal rods grown in aqueous solution can be changed into a tubular shape by two-step aging in the course of the growing process. In the first step, hexagonal ZnO rods is grown by aging at $90^{\circ}C$ under a highly supersaturated aqueous solution giving rise to a fast precipitation rate. Meanwhile, during the second step aging at $60^{\circ}C$ in the same aqueous solution, the hexagonal polar face (001) having higher surface energy than (010) side planes dissolves to minimize surface energy. Hence the flat (001) face changes to a craterlike face and the hexagonal rod length of ZnO decreases at an initial-stage of this step aging. The formation of the (101) wedge-type faces is ascribed to the resultant of competitive reactions between the dissolution of polar face minimizing the surface energy which is a dominant reaction at the initial stage and the precipitation reaction dissipating supersaturation. At a later stage of the second-step the reaction rates of these two processes in the aqueous solution become similar and the overall reaction is terminated.

Flaw Analysis Based Life Assessment of Welded Tubular Joint (결함해석에 기초한 배관용접부 수명평가)

  • Lee, Hyeong-Il;Han, Tae-Su;Jeong, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1331-1342
    • /
    • 2000
  • In power generation systems a variety of structural components typically operate at high temperature and pressure. Therefore a life assessment methodology accounting for gradual creep fracture is increasingly needed for these components. The most critical defects in such structure are generally found in the form of semi-elliptical surface cracks in the welded tubular joints. Therefore the analysis of a semi-elliptical surface crack in a plate or a shell is an important problem in engineering fracture mechanics. On this background, via shell/line-spring finite element analyses of such surface cracks in the welded T and L joints under various loadings, we investigate J-integral along the crack front We first develop T and L joints auto mesh generation program providing ABAQUS input file composed of shell/line-spring finite elements. We then further develop a T and L joints life assessment program based on the experimental creep crack growth law and auto mesh generation program in a graphical user interface format Finally the remaining life of T and L joints for various analytical parameters are assessed using the developed life assessment program.