KYUNGPOOK Math. J. 60(2020), 361-373
https://doi.org/10.5666/KMJ.2020.60.2.361
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

Canal Surfaces in Pseudo-Galilean 3-Spaces

Yilmaz Tunçer* and Murat Kemal Karacan
Department of Mathematics, Usak University, Usak 64200, Turkey
e-mail: yilmaz.tuncer@usak.edu.tr and murat.karacan@usak.edu.tr

Abstract. In this paper, we define admissible canal surfaces with isotropic radius vectors in pseudo-Galilean 3 -spaces and we obtaine their position vectors. We also attain some important results by considering their Gauss and mean curvatures.

1. Introduction

A canal surface is defined as an envelope of a one-parameter set of spheres, centered at a spine curve $\gamma(s)$ with radius $r(s)$. When $r(s)$ is a constant function, the canal surface is the envelope of a moving sphere and is called a pipe surface. Canal surfaces have wide applications in CAGD, such as construction of blending surfaces, shape reconstruction, transition surfaces between pipes, and robotic path planning. An envelope of a 1-parameter family of surfaces is constructed in the same way as we construct a 1-parameter family of curves. The family is described by a differentiable function $F(x, y, z, \lambda)=0$, where λ is a parameter. When λ can be eliminated from the equations

$$
F(x, y, z, \lambda)=0
$$

and

$$
\frac{\partial F(x, y, z, \lambda)}{\partial \lambda}=0
$$

we get the envelope, which is a surface described implicitly as $G(x, y, z)=0$. For example, for a 1-parameter family of planes, we get a developable surface $[3,5]$.

A general canal surface is an envelope of a 1-parameter family of surfaces. The envelope of a 1-parameter family $s \longrightarrow S^{2}(s)$ of spheres in \mathbb{R}^{3} is called a general canal surface [3]. The curve formed by the centers of the spheres is called center curve of the canal surface. The radius of general canal surface is the function r such that $r(s)$ is the radius of the sphere $S^{2}(s)$.

[^0]Received March 4, 2018; revised February 9, 2019; accepted June 27, 2019.
2010 Mathematics Subject Classification: 53A35, 53B25.
Key words and phrases: pseudo-Galilean space, canal surface, tubular surface.

Suppose that the center curve of a canal surface is a unit speed curve $\gamma: I \rightarrow \mathbb{R}^{3}$. The general canal surface can be parametrized by the formula

$$
\begin{equation*}
C(s, t)=\gamma(s)-R(s) T(s)-Q(s) \cos (t) N(s)+Q(s) \sin (t) B(s) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{gathered}
R(s)=r(s) r^{\prime}(s) \\
Q(s)= \pm r(s) \sqrt{1-r^{\prime}(s)^{2}}
\end{gathered}
$$

and $T(s), N(s), B(s)$ are the unit tangent, the principal normal, the binormal vectors of the center curve $\gamma(s)$. All the tubes and the surfaces of revolution are subclass of the general canal surface.
Theorem 1.1. Let M be a canal surface. The center curve of M is a straight line if and only if M is a surface of revolution for which no normal line to the surface is parallel to the axis of revolution. The following conditions are equivalent for a canal surface M :
(i) M is a tube parametrized by (1.1);
(ii) the radius of M is constant;
(iii) the radius vector of each sphere in family that defines the canal surface M meets the center curve orthogonally [3].

2. Canal Surfaces in Pseudo-Galilean Space

Pseudo-Galilean geometry is one of the real Cayley-Klein geometries of projective signature $(0,0,+,-)[6]$. The absolute of Pseudo-Galilean geometry is an ordered triple $\{w, f, I\}$ where w is the ideal (absolute) plane, f is line in w and I is the fixed hyperbolic involution of points of f. The Pseudo-Galilean scalar product g can be written as

$$
g(A, B)=\left\{\begin{array}{cl}
a_{1} b_{1}, & \text { if } \quad a_{1} \neq 0 \vee b_{1} \neq 0 \tag{2.1}\\
a_{2} b_{2}-a_{3} b_{3}, & \text { if } \quad a_{1}=0 \wedge b_{1}=0
\end{array}\right.
$$

where $A=\left(a_{1}, a_{2}, a_{3}\right)$ and $B=\left(b_{1}, b_{2}, b_{3}\right)$, and the Pseudo-Galilean norm of the vector $A=\left(a_{1}, a_{2}, a_{3}\right)$ is defined by

$$
\|A\|=\left\{\begin{array}{cl}
a_{1}, & \text { if } a_{1} \neq 0 \\
\sqrt{\left(a_{2}\right)^{2}-\left(a_{3}\right)^{2}}, & \text { if } a_{1}=0
\end{array}\right.
$$

The vector $A=\left(a_{1}, a_{2}, a_{3}\right)$ is said to be non-isotropic if $a_{1} \neq 0$. The PseudoGalilean cross product is defined for $A=\left(a_{1}, a_{2}, a_{3}\right), B=\left(b_{1}, b_{2}, b_{3}\right)$ by

$$
A \wedge_{G_{3}^{1}} B=\left|\begin{array}{ccc}
0 & -e_{2} & e_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

$[1,2,4,7]$. All unit non-isotropic vectors are in the form $\left(1, a_{2}, a_{3}\right)$, for isotropic vectors $a_{1}=0$. There are four types of isotropic vectors: spacelike $\left(\left(a_{2}\right)^{2}-\left(a_{3}\right)^{2}\right.$ $>0)$, timelike $\left(\left(a_{2}\right)^{2}-\left(a_{3}\right)^{2}<0\right)$ and two types of lightlike $\left(a_{2}= \pm a_{3}\right)$ vectors. A non-lightlike isotropic vector is a unit vector if $\left(a_{2}\right)^{2}-\left(a_{3}\right)^{2}= \pm 1$.

An admissible curve $\gamma: I \subseteq R \rightarrow G_{3}^{1}$ is defined by

$$
\begin{equation*}
\gamma(s)=(s, y(s), z(s)) \tag{2.2}
\end{equation*}
$$

where s is arc length parameter. The curvature $\kappa(s)$ and the torsion $\tau(s)$ are defined by

$$
\begin{equation*}
\kappa(s)=\sqrt{\left|\left(y^{\prime \prime}(s)\right)^{2}-\left(z^{\prime \prime}(s)\right)^{2}\right|}, \quad \tau(x)=\frac{y^{\prime \prime}(s) z^{\prime \prime \prime}(s)-y^{\prime \prime \prime}(s) z^{\prime \prime}(s)}{\kappa^{2}(s)} \tag{2.3}
\end{equation*}
$$

An admissible curve has no inflection points, no isotropic tangents or normals whose projections on the absolute plane would be light-like vectors. The associated trihedron is given by

$$
\begin{align*}
T(s) & =\gamma^{\prime}(s)=\left(1, y^{\prime}(s), z^{\prime}(s)\right) \\
N(s) & =\frac{1}{\kappa(s)}\left(0, y^{\prime \prime}(s), z^{\prime \prime}(s)\right) \tag{2.4}\\
B(s) & =\frac{1}{\kappa(s)}\left(0, \epsilon z^{\prime \prime}(s), \epsilon y^{\prime \prime}(s)\right)
\end{align*}
$$

where $\epsilon=\mp 1$, chosen by criterion $\operatorname{det}(T(s), N(s), B(s))=1$ means that

$$
\left|\left(y^{\prime \prime}(s)\right)^{2}-\left(z^{\prime \prime}(s)\right)^{2}\right|=\epsilon\left(\left(y^{\prime \prime}(s)\right)^{2}-\left(z^{\prime \prime}(s)\right)^{2}\right)
$$

The curve $\gamma(s)$ given in (2.2) is timelike (resp. spacelike) if $N(s)$ is a spacelike(resp. timelike) vector. The principal normal vector or simply normal is spacelike if $\varepsilon=1$ and timelike if $\varepsilon=-1$. For derivatives of the tangent (vector) $T(s)$, the normal $N(s)$ and the binormal $B(s)$, respectively, the following Serret-Frenet formulas hold

$$
\begin{equation*}
T^{\prime}(s)=\kappa(s) N(s), \quad N^{\prime}(s)=\tau(s) B(s), \quad B^{\prime}(s)=\tau(s) N(s) \tag{2.5}
\end{equation*}
$$

On the other hand, a C^{r}-surface, $r \geq 2$, is a subset $\Phi \subset G_{3}^{1}$ for which there exists an open subset D of \mathbb{R}^{2} and C^{r}-mapping $X: D \rightarrow G_{3}^{1}$ satisfying $\Phi=X(D)$. A C^{r} surface $\Phi \subset G_{3}^{1}$ is called regular if X is an immersion, and Φ is called simple if X is an embedding. It is admissible if it does not have pseudo-Euclidean tangent planes. If we denote

$$
\begin{aligned}
X & =X\left(x\left(u_{1}, u_{2}\right), y\left(u_{1}, u_{2}\right), z\left(u_{1}, u_{2}\right)\right) \\
x_{, i} & =\frac{\partial x}{\partial u_{i}}, y_{, i}=\frac{\partial y}{\partial u_{i}}, z_{, i}=\frac{\partial z}{\partial u_{i}}, i=1,2
\end{aligned}
$$

then, a surface is admissible if and only if $x_{, i} \neq 0$, for some $i=1,2$.
Let $\Phi \subset G_{3}^{1}$ be a regular admissible surface. Then, the unit normal vector field of a surface $X(u, v)$ is equal to

$$
\begin{align*}
\eta(u, v) & =\frac{\left(0, x_{, 1} z_{, 2}-x_{, 2} z_{, 1}, x_{, 1} y_{, 2}-x_{, 2} y, 1\right.}{W(u, v)} \tag{2.6}\\
W(u, v) & =\sqrt{\left|\left(x_{, 1} y_{, 2}-x_{, 2} y_{, 1}\right)^{2}-\left(x_{, 1} z_{, 2}-x_{, 2} z_{, 1}\right)^{2}\right|}
\end{align*}
$$

The function $W(u, v)$ is equal to the pseudo-Galilean norm of the isotropic vector $x_{, 1} X_{, 2}-x_{, 2} X_{, 1}$. Vector defined by

$$
\sigma=\frac{\left(x_{, 1} X_{, 2}-x_{, 2} X_{, 1}\right)}{W}
$$

is called a side tangential vector. We will not consider surfaces with $W(u, v)=0$, i.e. surfaces having lightlike side tangential vector (lightlike surfaces).

Since the normal vector field satisfies $g(\eta, \eta)=\epsilon= \pm 1$, we distinguish two basic types of admissible surfaces: spacelike surfaces having timelike surface normals $(\epsilon=-1)$ and timelike surfaces having spacelike normals $(\epsilon=1)$.

The first fundamental form of a surface is induced from the metric of the ambient space G_{3}^{1}

$$
\begin{equation*}
d s^{2}=\left(g_{1} d u_{1}+g_{2} d u_{2}\right)^{2}+\delta\left(h_{11} d u_{1}^{2}+2 h_{12} d u_{1} d u_{2}+h_{22} d u_{2}^{2}\right) \tag{2.7}
\end{equation*}
$$

where $g_{i}=x_{, i}, h_{i j}=g\left(\widetilde{X}_{, i}, \widetilde{X}_{, j}\right)$ and

$$
\delta= \begin{cases}0 & ; \text { if direction } d u_{1}: d u_{2} \text { is non-isotropic } \\ 1 & ; \text { if direction } d u_{1}: d u_{2} \text { is isotropic. }\end{cases}
$$

By (~) above of a vector is denoted the projection of a vector on the pseudoEuclidean $y z$-plane. The Gaussian curvature of a surface is defined by means of the coefficients of the second fundamental form

$$
\begin{equation*}
K=-\epsilon \frac{L_{11} L_{22}-L_{12}^{2}}{W^{2}} \tag{2.8}
\end{equation*}
$$

The second fundamental form $I I$ is given by

$$
I I=L_{11} d u_{1}^{2}+2 L_{12} d u_{1} d u_{2}+L_{22} d u_{2}^{2}
$$

where $L_{i j}$ are the normal components of $X_{, i, j}, i, j=1,2$. It holds

$$
\begin{equation*}
L_{i j}=\epsilon g\left(\left(\frac{x_{, 1} \widetilde{X}_{, i, j}-x_{, i, j} \tilde{X}_{, 1}}{x_{, 1}}\right), \eta\right)=\epsilon g\left(\left(\frac{x_{, 2} \widetilde{X}_{, i, j}-x_{, i, j} \tilde{X}_{, 1}}{x_{, 2}}\right), \eta\right) \tag{2.9}
\end{equation*}
$$

The mean curvature of a surface is defined by $[4,7]$

$$
\begin{equation*}
H=-\epsilon \frac{\left(g_{2}\right)^{2} L_{11}-2 g_{1} g_{2} L_{12}+\left(g_{1}\right)^{2} L_{22}}{2 W^{2}} \tag{2.10}
\end{equation*}
$$

In pseudo-Galilean geometry, there are two types of sphere depending radius vector whether it is an isotropic vector or it is a non-isotropic vector. Spheres with non-isotropic radius vector are pseudo-Euclidean circles in $y z$-plane and spheres with isotropic radius vector are parallel planes such as $x= \pm r$. Pseudo-Euclidean circles intersect the absolute line f. There are three kinds of pseudo-Euclidean circles; circles with timelike radius vector $\left(H_{ \pm}^{1}(r)\right)$, spacelike radius vector $\left(S_{ \pm}^{1}(r)\right)$ and lightlike radius vector, where

$$
S_{ \pm}^{1}(r)=\left\{X \in y z-\text { plane } \mid g(X, X)=r^{2}\right\}
$$

and

$$
H_{ \pm}^{1}(r)=\left\{X \in y z-\operatorname{plane} \mid g(X, X)=-r^{2}\right\}
$$

Definition 2.1. The envelope of a 1-parameter family $r \rightarrow S_{ \pm}^{1}(r)$ (or $\left.r \rightarrow H_{ \pm}^{1}(r)\right)$ of pseudo-Euclidean circles in G_{3}^{1} is called a canal surface in pseudo-Galilean 3space. The curve formed by the centers of the pseudo-Euclidean circles is called center curve of the canal surface. The radius of the canal surface is the function r such that $r(s)$ is the radius of the pseudo-Euclidean circles $S_{ \pm}^{1}(s)$ (or $\left.H_{ \pm}^{1}(s)\right)$.

Let us consider $C(s, t)-\gamma(s)$ is a isotropic vector of $H_{ \pm}^{1}(r)$ then, the envelope of a 1-parameter family $r \rightarrow H_{ \pm}^{1}(r)$ in G_{3}^{1} is spacelike canal surface and since $C(s, t)-\gamma(s) \in S p\{T(s), N(s), B(s)\}$ and $C(s, t)$ is non-isotropic then, we have

$$
\begin{equation*}
C(s, t)=\gamma(s)+\psi(s, t) T(s)+\varphi(s, t) N(s)+\omega(s, t) B(s) \tag{2.11}
\end{equation*}
$$

and $\psi(s, t)=0$. In the case that the centered curve is a spacelike curve, we can write

$$
\begin{equation*}
g(C(s, t)-\gamma(s), C(s, t)-\gamma(s))=-\varphi^{2}(s, t)+\omega^{2}(s, t)=-r(s)^{2} \tag{2.12}
\end{equation*}
$$

By differentiating (2.12) with respect to s and t, we get

$$
\begin{gather*}
\varphi(s, t) \varphi_{s}(s, t)-\omega(s, t) \omega_{s}(s, t)=r^{\prime}(s) r(s) \tag{2.13}\\
\varphi(s, t) \varphi_{t}(s, t)-\omega(s, t) \omega_{t}(s, t)=0 \tag{2.14}
\end{gather*}
$$

from the equations (2.12), (2.13) and (2.14), we obtain

$$
\omega(s, t)=r(s) \sinh (t), \varphi(s, t)=r(s) \cosh (t)
$$

Thus, we have the following corollary.

Corollary 2.2. Let $\gamma(s)$ be an admissible spacelike curve with arclenght parameter in pseudo-Galilean 3-space. Then, position vector of spacelike canal surface with spacelike centered curve is

$$
\begin{equation*}
C(s, t)=\gamma(s)+r(s) \cosh (t) N(s)+r(s) \sinh (t) B(s) . \tag{2.15}
\end{equation*}
$$

By using (2.5) and (2.15), natural bases $\left\{C_{s}, C_{t}\right\}$ are

$$
\begin{aligned}
& C_{s}=T(s)+\left\{r^{\prime} \cosh (t)+r \tau \sinh (t)\right\} N(s)+\left\{r^{\prime} \sinh (t)+r \tau \cosh (t)\right\} B(s) \\
& C_{t}=r \sinh (t) N(s)+r \cosh (t) B(s)
\end{aligned}
$$

and from (2.7) the coefficients $h_{i j}$ and g_{i} are

$$
\begin{gathered}
h_{11}=r^{2}(s) \tau^{2}(s)-\left(r^{\prime}(s)\right)^{2}, \quad h_{12}=h_{21}=r^{2}(s) \tau(s), \quad h_{22}=r^{2}(s) \\
g_{1}=1, \quad g_{2}=0 .
\end{gathered}
$$

Thus, the first fundamental form of spacelike canal surface is

$$
I_{C}=\left(1+r^{2}(s) \tau^{2}(s)-\left(r^{\prime}(s)\right)^{2}\right) d s^{2}+2 r^{2}(s) \tau(s) d s d t+r^{2}(s) d t^{2} .
$$

By using (2.5), the second derivations (2.15) are

$$
\begin{aligned}
C_{s s}= & \left\{\kappa+\left(2 r^{\prime} \tau+r \tau^{\prime}\right) \sinh (t)+\left(r \tau^{2}+r^{\prime \prime}\right) \cosh (t)\right\} N(s) \\
& +\left\{\left(2 r^{\prime} \tau+r \tau^{\prime}\right) \cosh (t)+\left(r \tau^{2}+r^{\prime \prime}\right) \sinh (t)\right\} B(s) \\
C_{t t}= & r \cosh (t) N(s)+r \sinh (t) B(s) \\
C_{t s}= & \left\{r^{\prime} \sinh (t)+r \tau \cosh (t)\right\} N(s)+\left\{r \tau \sinh (t)+r^{\prime} \cosh (t)\right\} B(s)
\end{aligned}
$$

and the unit normal vector is

$$
\eta(s, t)=\cosh (t) N(s)+\sinh (t) B(s) .
$$

From (2.9) coefficients $L_{i j}$ are

$$
L_{11}=r(s) \tau^{2}(s)+r^{\prime \prime}(s)+\kappa(s) \cosh (t), L_{12}=L_{21}=r(s) \tau(s), L_{22}=r(s)
$$

and the second fundamental form is

$$
I I_{C}=\left(r(s) \tau^{2}(s)+r^{\prime \prime}(s)+\kappa(s) \cosh (t)\right) d s^{2}+2 r(s) \tau(s) d s d t+r(s) d t^{2} .
$$

Thus, from (2.8) and (2.10), Gauss and mean curvatures are

$$
\begin{equation*}
K(s, t)=\frac{r^{\prime \prime}(s)+\kappa(s) \cosh (t)}{r(s)}, H(s, t)=\frac{1}{2 r(s)} . \tag{2.16}
\end{equation*}
$$

In the case that $K(s, t)=0$, the centered curve has to be planar and there are two K-flat canal surfaces for $r(s)=c_{1} s+c_{2}$ and $r(s)=c$.

Hence, from (2.2), (2.3), (2.4), (2.15) and (2.16), we have the following theorem.
Theorem 2.3. Let M be a spacelike canal surface with spacelike centered curve in pseudo-Galilean 3-space. Then, the followings are true.
(i) There is no minimal spacelike canal surface with spacelike centered curve,
(ii) Gauss and mean curvatures of M satisfy the relation

$$
K(s, t)-2 H(s, t)\left(r^{\prime \prime}(s)+\kappa(s) \cosh (t)\right)=0,
$$

(iii) M is a K-flat if and only if M is a parabolic cone and its position vector is

$$
\begin{aligned}
C(s, t)= & \left(s,\left(c_{1} s+c_{2}\right)\left(c_{3} \cosh (t) \mp \sqrt{\left(c_{3}\right)^{2}+1} \sinh (t)\right)\right. \\
& \left.,\left(c_{1} s+c_{2}\right)\left(\mp \sqrt{\left(c_{3}\right)^{2}+1} \cosh (t)+c_{3} \sinh (t)\right)\right)
\end{aligned}
$$

where $c_{1} \neq 0, c_{2}, c_{3} \in \mathbb{R}$, (see figure 1.a),
(iv) M is a K-flat spacelike tubular surface if and only if M is a parabolic cyclinder and its position vector is
$C(s, t)=\left(s, c_{1} c_{2} \cosh (t) \mp c_{1} \sqrt{\left(c_{2}\right)^{2}+1} \sinh (t), \mp c_{1} \sqrt{\left(c_{2}\right)^{2}+1} \cosh (t)+c_{1} c_{2} \sinh (t)\right)$
where $c_{1} \in \mathbb{R}^{+}, c_{2} \in \mathbb{R}$, (see figure 1.b),
(v) All the spacelike tubes with spacelike centered curve are positive-constant mean curvature surfaces.

In the case that $C(s, t)$ is spacelike canal surface and centered curve is a timelike curve, we can write:

$$
\begin{equation*}
g(C(s, t)-\gamma(s), C(s, t)-\gamma(s))=\varphi^{2}(s, t)-\omega^{2}(s, t)=-r^{2}(s) . \tag{2.17}
\end{equation*}
$$

By differentiating (2.17) with respect to s and t, we get

$$
\begin{gather*}
\omega(s, t) \omega_{s}(s, t)-\varphi(s, t) \varphi_{s}(s, t)=r^{\prime}(s) r(s) \tag{2.18}\\
\omega(s, t) \omega_{t}(s, t)-\varphi(s, t) \varphi_{t}(s, t)=0 \tag{2.19}
\end{gather*}
$$

then, we obtain

$$
\omega(s, t)=r(s) \cosh (t), \varphi(s, t)=r(s) \sinh (t)
$$

by using (2.17), (2.18) and (2.19).
Thus, we have the following corollary.
Corollary 2.4. Let $\gamma(s)$ be an admissible timelike curve with arclenght parameter in pseudo-Galilean 3-space. Then, position vector of spacelike canal surface with timelike centered curve is

$$
\begin{equation*}
C(s, t)=\gamma(s)+r(s) \sinh (t) N(s)+r(s) \cosh (t) B(s) . \tag{2.20}
\end{equation*}
$$

From (2.5) and (2.20), natural bases $\left\{C_{s}, C_{t}\right\}$ are

$$
\begin{aligned}
& C_{s}=T(s)+\left\{r^{\prime} \sinh (t)+r \tau \cosh (t)\right\} N(s)+\left\{r^{\prime} \cosh (t)+r \tau \sinh (t)\right\} B(s) \\
& C_{t}=r \cosh (t) N(s)+r \sinh (t) B(s)
\end{aligned}
$$

and from (2.7) the coefficients $h_{i j}$ and g_{i} are

$$
\begin{gathered}
h_{11}=r^{2}(s) \tau^{2}(s)-\left(r^{\prime}(s)\right)^{2}, \quad h_{12}=h_{21}=r^{2}(s) \tau(s), \quad h_{22}=r^{2}(s) \\
g_{1}=1, g_{2}=0 .
\end{gathered}
$$

Thus, the first fundamental form is

$$
I_{C}=\left(1+r^{2}(s) \tau^{2}(s)-\left(r^{\prime}(s)\right)^{2}\right) d s^{2}+2 r^{2}(s) \tau(s) d s d t+r^{2}(s) d t^{2}
$$

By using (2.5), the second derivations (2.20) are

$$
\begin{aligned}
C_{s s}= & \left\{\kappa+\left(r^{\prime \prime}+r \tau^{2}\right) \sinh (t)+\left(2 r^{\prime} \tau+r \tau^{\prime}\right) \cosh (t)\right\} N(s) \\
& +\left\{\left(r^{\prime \prime}+r \tau^{2}\right) \cosh (t)+\left(2 r^{\prime} \tau+r \tau^{\prime}\right) \sinh (t)\right\} B(s) \\
C_{t t}= & r \sinh (t) N(s)+r \cosh (t) B(s) \\
C_{t s}= & \left\{r^{\prime} \cosh (t)+r \tau \sinh (t)\right\} N(s)+\left\{r^{\prime} \sinh (t)+r \tau \cosh (t)\right\} B(s)
\end{aligned}
$$

the unit normal vector is

$$
\eta(s, t)=\sinh (t) N(s)+\cosh (t) B(s) .
$$

From (2.9), the coefficients $L_{i j}$ are

$$
L_{11}=\kappa(s) \sinh (t)-r(s) \tau^{2}(s)-r^{\prime \prime}(s), L_{12}=L_{21}=-r(s) \tau(s), L_{22}=-r(s)
$$

and so the second fundamental form is

$$
I I_{C}=\left(\kappa(s) \sinh (t)-r(s) \tau^{2}(s)-r^{\prime \prime}(s)\right) d s^{2}-2 r(s) \tau(s) d s d t-r(s) d t^{2} .
$$

From (2.8) and (2.10), Gauss and mean curvatures are

$$
\begin{equation*}
K(s, t)=\frac{\kappa(s) \sinh (t)-r^{\prime \prime}(s)}{r(s)}, \quad H(s, t)=\frac{1}{2 r(s)} \tag{2.21}
\end{equation*}
$$

respectively. In the case that $K(s, t)=0$, the centered curve has to be planar and there are two K-flat canal surfaces for $r(s)=c_{1} s+c_{2}$ and $r(s)=c$.

Hence, from (2.2), (2.3), (2.4), (2.20) and (2.21), we have the following cases.
Theorem 2.5. Let M be a spacelike canal surface with timelike centered curve in pseudo-Galilean 3-space. Then, the followings are true.
(i) There is no minimal spacelike canal surface with timelike centered curve,
(ii) Gauss and mean curvatures of M satisfy the relation

$$
K(s, t)+2 H(s, t)\left(\kappa \sinh (t)-r^{\prime \prime}\right)=0
$$

(iii) M is a K-flat if and only if M is a parabolic cone and its position vector is

$$
\begin{aligned}
C(s, t)= & \left(s,\left(c_{1} s+c_{2}\right)\left(c_{3} \sinh (t) \mp \sqrt{\left(c_{3}\right)^{2}-1} \cosh (t)\right)\right. \\
& \left.,\left(c_{1} s+c_{2}\right)\left(\mp \sqrt{\left(c_{3}\right)^{2}-1} \sinh (t)+c_{3} \cosh (t)\right)\right)
\end{aligned}
$$

where $c_{1} \neq 0, c_{2} \in \mathbb{R}, c_{3} \in \mathbb{R}-[0,1)$, (see figure 2.a),
(iv) M is a K-flat spacelike tubular surface if and only if M is a parabolic cyclinder and its position vector is
$C(s, t)=\left(s, c_{1} c_{2} \sinh (t) \mp c_{1} \sqrt{\left(c_{2}\right)^{2}-1} \cosh (t), \mp c_{1} \sqrt{\left(c_{2}\right)^{2}-1} \sinh (t)+c_{1} c_{2} \cosh (t)\right)$
where $c_{1} \in \mathbb{R}^{+}, c_{2} \in \mathbb{R}-[0,1$), (see figure 2.b),
(v) All the spacelike tubes with timelike centered curve are positive-constant mean curvature surfaces.

Accordingly, in the case that $C(s, t)-\gamma(s)$ is an isotropic radius vector of $S_{ \pm}^{1}(r)$ then, the envelope of a 1-parameter family $s \rightarrow S_{ \pm}^{1}(r)$ in G_{3}^{1} is timelike canal surface and since $C(s, t)-\gamma(s) \in S p\{T(s), N(s), B(s)\}$ and $C(s, t)$ is non-isotropic then, we have (2.11) and $\psi(s, t)=0$. If the centered curve is a timelike curve then, the position vector $C(s, t)$ is obtained in the same form of (2.15). From (2.7) and (2.9), coefficients of the first and the second fundamental forms are obtained as

$$
\begin{aligned}
& h_{11}=\left(r^{\prime}(s)\right)^{2}-r^{2}(s) \tau^{2}(s), h_{12}=h_{21}=-r^{2}(s) \tau(s), \quad h_{22}=-r^{2}(s) \\
& L_{11}=\kappa(s) \cosh (t)+r(s) \tau(s)^{2}+r^{\prime \prime}(s), L_{12}=L_{21}=r(s) \tau(s), L_{22}=r(s)
\end{aligned}
$$

and also from (2.8) and (2.10), the Gauss and the mean curvatures are

$$
\begin{equation*}
K(s, t)=-\frac{\kappa(s) \cosh (t)+r^{\prime \prime}(s)}{r(s)}, H(s, t)=-\frac{1}{2 r(s)} . \tag{2.22}
\end{equation*}
$$

Thus, from (2.2), (2.3), (2.4), (2.15) and (2.22), we can give the following corollary.
Corollary 2.6. Let M be a timelike canal surface with timelike centered curve in pseudo-Galilean 3-space. Then, the followings are true.
(i) There is no minimal timelike canal surface with timelike centered curve,
(ii) Gauss and mean curvatures of M satisfy the relation

$$
K(s, t)-2 H(s, t)\left(\kappa(s) \cosh (t)+r^{\prime \prime}(s)\right)=0
$$

(iii) M is a K-flat if and only if M is a parabolic cone and its position vector is

$$
\begin{aligned}
C(s, t)= & \left(s,\left(c_{1} s+c_{2}\right)\left(c_{3} \cosh (t) \mp \sqrt{\left(c_{3}\right)^{2}-1} \sinh (t)\right)\right. \\
& \left.,\left(c_{1} s+c_{2}\right)\left(\mp \sqrt{\left(c_{3}\right)^{2}-1} \cosh (t)+c_{3} \sinh (t)\right)\right)
\end{aligned}
$$

where $c_{1} \neq 0, c_{2}, c_{3} \in \mathbb{R}-[0,1)$, (see figure 3.a),
(iv) M is a K-flat timelike tubular surface if and only if M is a parabolic cyclinder and its position vector is
$C(s, t)=\left(s, c_{1} c_{2} \cosh (t) \mp c_{1} \sqrt{\left(c_{2}\right)^{2}-1} \sinh (t), \mp c_{1} \sqrt{\left(c_{2}\right)^{2}-1} \cosh (t)+c_{1} c_{2} \sinh (t)\right)$
where $c_{1} \in \mathbb{R}^{+}, c_{2} \in \mathbb{R}-[0,1)$, (see figure 3.b),
(v) All the timelike tubes with timelike centered curve are negative-constant mean curvature surfaces.

If the centered curve is a spacelike curve then, the position vector $C(s, t)$ is obtained in the same form of (2.20) and from (2.7) and (2.9), coefficients of the first and the second fundamental forms are

$$
\begin{gathered}
h_{11}=\left(r^{\prime}(s)\right)^{2}-r^{2}(s) \tau^{2}(s), h_{12}=h_{21}=-r^{2}(s) \tau(s), h_{22}=-r^{2}(s) \\
L_{11}=\kappa(s) \sinh (t)-r(s) \tau^{2}(s)-r^{\prime \prime}(s), L_{12}=L_{21}=-r(s) \tau(s), L_{22}=-r(s)
\end{gathered}
$$

and also from (2.8) and (2.10), the Gauss and the mean curvatures are

$$
\begin{equation*}
K(s, t)=\frac{r^{\prime \prime}(s)-\kappa(s) \sinh (t)}{r(s)}, \quad H(s, t)=\frac{-1}{2 r(s)} . \tag{2.23}
\end{equation*}
$$

We have the following cases, by using the equations (2.2), (2.3), (2.4), (2.20) and (2.23).

Corollary 2.7. Let M be a timelike canal surface with spacelike centered curve in pseudo-Galilean 3-space. Then, the followings are true.
(i) There is no minimal timelike canal surface with spacelike centered curve,
(ii) Gauss and mean curvatures of M satisfy the relation

$$
K(s, t)+2 H(s, t)\left(r^{\prime \prime}(s)-\kappa(s) \sinh (t)\right)=0,
$$

(iii) M is a K-flat if and only if M is a parabolic cone and its position vector is

$$
\begin{aligned}
C(s, t)= & \left(s,\left(c_{1} s+c_{2}\right)\left(c_{3} \sinh (t) \mp \sqrt{\left(c_{3}\right)^{2}+1} \cosh (t)\right)\right. \\
& \left.,\left(c_{1} s+c_{2}\right)\left(\mp \sqrt{\left(c_{3}\right)^{2}+1} \sinh (t)+c_{3} \cosh (t)\right)\right)
\end{aligned}
$$

where $c_{1} \neq 0, c_{2} \in \mathbb{R}, c_{3} \in \mathbb{R}$, (see figure 4.a),
(iv) M is a K-flat timelike tubular surface if and only if M is a parabolic cyclinder and its position vector is
$C(s, t)=\left(s, c_{1} c_{2} \sinh (t) \mp c_{1} \sqrt{\left(c_{2}\right)^{2}+1} \cosh (t), \mp c_{1} \sqrt{\left(c_{2}\right)^{2}+1} \sinh (t)+c_{1} c_{2} \cosh (t)\right)$ where $c_{1} \in \mathbb{R}^{+}, c_{2} \in I$, (see figure 4.b),
(v) All the timelike tubes with spacelike centered curve are negative-constant mean curvature surfaces.
Now, we can summarise our study as in following theorem.
Theorem 2.8. Let $\gamma:(a, b) \rightarrow G_{3}^{1}$ be an admissible curve in G_{3}^{1} and M be a canal surface with the centered curve $\gamma(s)$ then, there are two types canal surfaces in G_{3}^{1} such that,
type-1: M is spacelike (timelike) canal surface and $\gamma(s)$ is spacelike (timelike) curve then, M is parametrized by

$$
C_{\mu}(s, t)=\gamma(s)+r(s) \cosh (t) N(s)+r(s) \sinh (t) B(s)
$$

type-2: M is spacelike (timelike) canal surface and $\gamma(s)$ is timelike (spacelike) curve then, M is parametrized by

$$
C_{\sigma}(s, t)=\gamma(s)+r(s) \sinh (t) N(s)+r(s) \cosh (t) B(s)
$$

In consideration of above theorem, we can give coefficients of the first fundamental forms, Gauss and mean curvatures as follow by taking $g_{1}=1, g_{2}=0$.

For the type- 1 canal surfaces,

$$
h_{11}=\mu r(s)^{2} \tau(s)^{2}, h_{21}=h_{12}=\mu r(s)^{2} \tau(s), h_{22}=\mu r(s)^{2}
$$

Gauss and mean curvatures are

$$
K(s, t)=\frac{\mu\left(r^{\prime \prime}(s)+\kappa(s) \cosh (t)\right)}{r(s)}, \quad H(s, t)=\frac{\mu}{2 r(s)} .
$$

For the type-2 canal surfaces,

$$
h_{11}=\sigma r(s)^{2} \tau(s)^{2}, h_{12}=h_{21}=\sigma r(s)^{2} \tau(s), h_{22}=\sigma r(s)^{2}
$$

Gauss and mean curvatures are

$$
K(s, t)=\frac{\sigma\left(r^{\prime \prime}(s)+\kappa(s) \cosh (t)\right)}{r(s)}, H(s, t)=\frac{\sigma}{2 r(s)}
$$

where

$$
\mu=\left\{\begin{aligned}
1, & \text { if } M \text { is a spacelike canal surface with spacelike centered curve } \\
-1, & \text { if } M \text { is a timelike canal surface with timelike centered curve }
\end{aligned}\right.
$$

and

$$
\sigma=\left\{\begin{aligned}
1, & \text { if } M \text { is a spacelike canal surface with timelike centered curve } \\
-1, & \text { if } M \text { is a timelike canal surface with spacelike centered curve. }
\end{aligned}\right.
$$

Figure 1: For (a); $c_{1}=2, c_{2}=1, c_{3}=0$, sign : $(-)$, for (b); $c_{1}=2, c_{2}=1$.

(a)

(b)

Figure 2: For (a); $c_{1}=c_{2}=1, c_{3}=0$, for (b) $; c_{1}=1, c_{2}=2$.

Figure 3: For (a) $c_{1}=c_{2}=1, c_{3}=2$, for (b) $; c_{1}=1, c_{2}=2$.

(a)

(b)

Figure 4: For $(\mathrm{a}) ; c_{1}=2, c_{2}=c_{3}=1$, for $(\mathrm{b}) ; c_{1}=2, c_{2}=0$.

Acknowledgements. The authors are indebted to the referees for helpful suggestions and insights concerning the presentation of this paper.

References

[1] Z. Erjavec, On generalization of Helices in the Galilean and the pseudo-Galilean space,
[2] Z. Erjavec and B. Divjak, The equiform differential geometry of curves in the pseudoGalilean space, Math. Commun., 13(2008), 321-332.
[3] A. Gray, Modern differential geometry Of curves and surfaces, CRC Press, BocaRaton Ann Arbor London Tokyo, 1993.
[4] A. O. Öğrenmiş and M. Ergüt, On the Gauss map of ruled surfaces of type II in 3-dimensional pseudo-Galilean space, Bol. Soc. Paran. Mat., 31(1)(2013), 145-152.
[5] G. Öztürk, B. Bulca, B. K. Bayram and K. Arslan, On canal surfaces in E ${ }^{3}$, Selçuk J. Appl. Math., 11(2)(2010), 103-108.
[6] O. Röschel, Die Geometrie des Galileischen Raumes, Forschungszentrum Graz, Mathematisch-Statistische Sektion, Graz, 1985. J. Math. Res., 6(3)(2014), 39-50.
[7] Z. M. Sipus and B. Divjak, Surfaces of constant curvature in the pseudo-Galilean space, Int. J. Math. Math. Sci., (2012), Art. ID 375264, 28 pp.

[^0]: * Corresponding Author.

