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Abstract. In this paper, we define admissible canal surfaces with isotropic radius vectors

in pseudo-Galilean 3-spaces and we obtaine their position vectors. We also attain some

important results by considering their Gauss and mean curvatures.

1. Introduction

A canal surface is defined as an envelope of a one-parameter set of spheres,
centered at a spine curve γ (s) with radius r(s). When r(s) is a constant function,
the canal surface is the envelope of a moving sphere and is called a pipe surface.
Canal surfaces have wide applications in CAGD, such as construction of blending
surfaces, shape reconstruction, transition surfaces between pipes, and robotic path
planning. An envelope of a 1-parameter family of surfaces is constructed in the
same way as we construct a 1-parameter family of curves. The family is described
by a differentiable function F (x, y, z, λ) = 0, where λ is a parameter. When λ can
be eliminated from the equations

F (x, y, z, λ) = 0

and
∂F (x, y, z, λ)

∂λ
= 0

we get the envelope, which is a surface described implicitly as G(x, y, z) = 0. For
example, for a 1-parameter family of planes, we get a developable surface [3, 5].

A general canal surface is an envelope of a 1-parameter family of surfaces. The
envelope of a 1-parameter family s −→ S2 (s) of spheres in R3 is called a general
canal surface [3]. The curve formed by the centers of the spheres is called center
curve of the canal surface. The radius of general canal surface is the function r such
that r(s) is the radius of the sphere S2 (s).
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Suppose that the center curve of a canal surface is a unit speed curve γ : I → R3.
The general canal surface can be parametrized by the formula

(1.1) C (s, t) = γ (s)−R (s)T (s)−Q (s) cos (t)N(s) +Q (s) sin (t)B(s)

where

R (s) = r(s)r′(s)

Q (s) = ±r(s)
√

1− r′(s)2

and T (s), N(s), B(s) are the unit tangent, the principal normal, the binormal
vectors of the center curve γ(s). All the tubes and the surfaces of revolution are
subclass of the general canal surface.

Theorem 1.1. Let M be a canal surface. The center curve of M is a straight line
if and only if M is a surface of revolution for which no normal line to the surface
is parallel to the axis of revolution. The following conditions are equivalent for a
canal surface M:

(i) M is a tube parametrized by (1.1);

(ii) the radius of M is constant;

(iii) the radius vector of each sphere in family that defines the canal surface M
meets the center curve orthogonally [3].

2. Canal Surfaces in Pseudo-Galilean Space

Pseudo-Galilean geometry is one of the real Cayley-Klein geometries of pro-
jective signature (0, 0, +, -) [6]. The absolute of Pseudo-Galilean geometry is an
ordered triple {w, f, I} where w is the ideal (absolute) plane, f is line in w and I is
the fixed hyperbolic involution of points of f . The Pseudo-Galilean scalar product
g can be written as

(2.1) g (A,B) =

{
a1b1, if a1 6= 0 ∨ b1 6= 0

a2b2 − a3b3, if a1 = 0 ∧ b1 = 0

where A = (a1, a2, a3) and B = (b1, b2, b3), and the Pseudo-Galilean norm of the
vector A = (a1, a2, a3) is defined by

‖A‖ =

{
a1, if a1 6= 0√

(a2)
2 − (a3)

2
, if a1 = 0.

The vector A = (a1, a2, a3) is said to be non-isotropic if a1 6= 0. The Pseudo-
Galilean cross product is defined for A = (a1, a2, a3), B = (b1, b2, b3) by

A ∧G1
3
B =

∣∣∣∣∣∣
0 −e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
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[1, 2, 4, 7]. All unit non-isotropic vectors are in the form (1, a2, a3), for isotropic

vectors a1 = 0. There are four types of isotropic vectors: spacelike ((a2)
2 − (a3)

2

> 0), timelike ((a2)
2 − (a3)

2
< 0) and two types of lightlike (a2 = ±a3) vectors. A

non-lightlike isotropic vector is a unit vector if (a2)
2 − (a3)

2
= ±1.

An admissible curve γ : I ⊆ R→ G1
3 is defined by

(2.2) γ(s) = (s, y(s), z(s)) .

where s is arc length parameter. The curvature κ(s) and the torsion τ(s) are defined
by

(2.3) κ(s) =

√∣∣∣(y′′(s))2 − (z′′(s))
2
∣∣∣ , τ(x) =

y′′(s)z′′′(s)− y′′′(s)z′′(s)
κ2(s)

.

An admissible curve has no inflection points, no isotropic tangents or normals
whose projections on the absolute plane would be light-like vectors. The associated
trihedron is given by

T (s) = γ′(s) = (1, y′(s), z′(s))

N(s) =
1

κ(s)
(0, y′′(s), z′′(s))(2.4)

B(s) =
1

κ(s)
(0, εz′′(s), εy′′(s))

where ε = ∓1, chosen by criterion det (T (s), N(s), B(s)) = 1 means that∣∣∣(y′′(s))2 − (z′′(s))
2
∣∣∣ = ε

(
(y′′(s))

2 − (z′′(s))
2
)
.

The curve γ(s) given in (2.2) is timelike (resp. spacelike) if N(s) is a space-
like(resp. timelike) vector. The principal normal vector or simply normal is space-
like if ε = 1 and timelike if ε = −1. For derivatives of the tangent (vector) T (s),
the normal N(s) and the binormal B(s), respectively, the following Serret-Frenet
formulas hold

(2.5) T ′(s) = κ(s)N(s), N ′(s) = τ(s)B(s), B′(s) = τ(s)N(s).

On the other hand, a Cr-surface, r ≥ 2, is a subset Φ ⊂ G1
3 for which there

exists an open subset D of R2 and Cr-mapping X : D → G1
3 satisfying Φ = X(D).

A Cr surface Φ ⊂ G1
3 is called regular if X is an immersion, and Φ is called simple

if X is an embedding. It is admissible if it does not have pseudo-Euclidean tangent
planes. If we denote

X = X(x(u1, u2), y(u1, u2), z(u1, u2))

x,i =
∂x

∂ui
, y,i =

∂y

∂ui
, z,i =

∂z

∂ui
, i = 1, 2
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then, a surface is admissible if and only if x,i 6= 0, for some i = 1, 2.
Let Φ ⊂ G1

3 be a regular admissible surface. Then, the unit normal vector field
of a surface X(u, v) is equal to

η(u, v) =
(0, x,1z,2 − x,2z,1, x,1y,2 − x,2y,1)

W (u, v)
,(2.6)

W (u, v) =

√∣∣∣(x,1y,2 − x,2y,1)
2 − (x,1z,2 − x,2z,1)

2
∣∣∣.

The function W (u, v) is equal to the pseudo-Galilean norm of the isotropic vector
x,1X,2 − x,2X,1. Vector defined by

σ =
(x,1X,2 − x,2X,1)

W

is called a side tangential vector. We will not consider surfaces with W (u, v) = 0,
i.e. surfaces having lightlike side tangential vector (lightlike surfaces).

Since the normal vector field satisfies g (η, η) = ε = ±1, we distinguish two
basic types of admissible surfaces: spacelike surfaces having timelike surface normals
(ε = −1) and timelike surfaces having spacelike normals (ε = 1).

The first fundamental form of a surface is induced from the metric of the ambient
space G1

3

(2.7) ds2 = (g1du1 + g2du2)
2

+ δ(h11du
2
1 + 2h12du1du2 + h22du

2
2),

where gi = x,i , hij = g
(
X̃,i, X̃,j

)
and

δ =

{
0 ; if direction du1 : du2 is non-isotropic
1 ; if direction du1 : du2 is isotropic.

By ( ˜ ) above of a vector is denoted the projection of a vector on the pseudo-
Euclidean yz−plane. The Gaussian curvature of a surface is defined by means of
the coefficients of the second fundamental form

(2.8) K = −εL11L22 − L2
12

W 2
.

The second fundamental form II is given by

II = L11 du
2
1 + 2L12 du1du2 + L22du

2
2

where Lij are the normal components of X,i,j , i, j = 1, 2. It holds

(2.9) Lij = εg

((
x,1X̃,i,j − x,i,jX̃,1

x,1

)
, η

)
= εg

((
x,2X̃,i,j − x,i,jX̃,1

x,2

)
, η

)
.
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The mean curvature of a surface is defined by [4, 7]

(2.10) H = −ε (g2)
2
L11 − 2g1g2L12 + (g1)

2
L22

2W 2
.

In pseudo-Galilean geometry, there are two types of sphere depending radius
vector whether it is an isotropic vector or it is a non-isotropic vector. Spheres with
non-isotropic radius vector are pseudo-Euclidean circles in yz−plane and spheres
with isotropic radius vector are parallel planes such as x = ±r. Pseudo-Euclidean
circles intersect the absolute line f . There are three kinds of pseudo-Euclidean
circles; circles with timelike radius vector (H1

±(r)), spacelike radius vector (S1
±(r))

and lightlike radius vector, where

S1
±(r) =

{
X ∈ yz − plane|g (X,X) = r2

}
and

H1
±(r) =

{
X ∈ yz − plane|g (X,X) = −r2

}
.

Definition 2.1. The envelope of a 1-parameter family r → S1
±(r) (or r → H1

±(r))
of pseudo-Euclidean circles in G1

3 is called a canal surface in pseudo-Galilean 3-
space. The curve formed by the centers of the pseudo-Euclidean circles is called
center curve of the canal surface. The radius of the canal surface is the function r
such that r(s) is the radius of the pseudo-Euclidean circles S1

±(s) (or H1
±(s)).

Let us consider C (s, t)− γ (s) is a isotropic vector of H1
±(r) then, the envelope

of a 1-parameter family r → H1
±(r) in G1

3 is spacelike canal surface and since
C (s, t)− γ (s) ∈ Sp {T (s) , N (s) , B (s)} and C (s, t) is non-isotropic then, we have

(2.11) C (s, t) = γ (s) + ψ (s, t)T (s) + ϕ (s, t)N (s) + ω (s, t)B (s)

and ψ (s, t) = 0. In the case that the centered curve is a spacelike curve, we can
write

(2.12) g (C (s, t)− γ (s) , C (s, t)− γ (s)) = −ϕ2 (s, t) + ω2 (s, t) = −r (s)
2
.

By differentiating (2.12) with respect to s and t, we get

(2.13) ϕ (s, t)ϕs (s, t)− ω (s, t)ωs (s, t) = r′ (s) r (s)

(2.14) ϕ (s, t)ϕt (s, t)− ω (s, t)ωt (s, t) = 0

from the equations (2.12), (2.13) and (2.14), we obtain

ω (s, t) = r (s) sinh(t) , ϕ (s, t) = r (s) cosh(t).

Thus, we have the following corollary.
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Corollary 2.2. Let γ (s) be an admissible spacelike curve with arclenght parameter
in pseudo-Galilean 3-space. Then, position vector of spacelike canal surface with
spacelike centered curve is

(2.15) C (s, t) = γ (s) + r (s) cosh(t)N (s) + r (s) sinh(t)B (s) .

By using (2.5) and (2.15), natural bases {Cs, Ct} are

Cs = T (s) + {r′ cosh(t) + rτ sinh(t)}N(s) + {r′ sinh(t) + rτ cosh(t)}B(s)

Ct = r sinh(t)N(s) + r cosh(t)B(s)

and from (2.7) the coefficients hij and gi are

h11 = r2 (s) τ2 (s)− (r′ (s))
2

, h12 = h21 = r2 (s) τ (s) , h22 = r2 (s)

g1 = 1, g2 = 0.

Thus, the first fundamental form of spacelike canal surface is

IC =
(

1 + r2 (s) τ2 (s)− (r′ (s))
2
)
ds2 + 2r2 (s) τ (s) dsdt+ r2 (s) dt2.

By using (2.5), the second derivations (2.15) are

Css =
{
κ+ (2r′τ + rτ ′) sinh(t) +

(
rτ2 + r′′

)
cosh(t)

}
N(s)

+
{

(2r′τ + rτ ′) cosh(t) +
(
rτ2 + r′′

)
sinh(t)

}
B(s)

Ctt = r cosh(t)N(s) + r sinh(t)B(s)

Cts = {r′ sinh(t) + rτ cosh(t)}N(s) + {rτ sinh(t) + r′ cosh(t)}B(s)

and the unit normal vector is

η (s, t) = cosh(t)N (s) + sinh(t)B (s) .

From (2.9) coefficients Lij are

L11 = r (s) τ2 (s) + r′′ (s) + κ (s) cosh(t), L12 = L21 = r (s) τ (s) , L22 = r (s)

and the second fundamental form is

IIC =
(
r (s) τ2 (s) + r′′ (s) + κ (s) cosh(t)

)
ds2 + 2r (s) τ (s) dsdt+ r (s) dt2.

Thus, from (2.8) and (2.10), Gauss and mean curvatures are

(2.16) K (s, t) =
r′′ (s) + κ (s) cosh(t)

r (s)
, H (s, t) =

1

2r (s)
.

In the case that K (s, t) = 0, the centered curve has to be planar and there are two
K-flat canal surfaces for r(s) = c1s+ c2 and r(s) = c.

Hence, from (2.2), (2.3), (2.4), (2.15) and (2.16), we have the following theorem.

Theorem 2.3. Let M be a spacelike canal surface with spacelike centered curve in
pseudo-Galilean 3-space. Then, the followings are true.
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(i) There is no minimal spacelike canal surface with spacelike centered curve,

(ii) Gauss and mean curvatures of M satisfy the relation

K (s, t)− 2H (s, t) (r′′ (s) + κ (s) cosh(t)) = 0,

(iii) M is a K−flat if and only if M is a parabolic cone and its position vector is

C(s, t) = (s, (c1s+ c2)(c3 cosh(t)∓
√

(c3)2 + 1 sinh(t))

, (c1s+ c2)(∓
√

(c3)2 + 1 cosh(t) + c3 sinh(t)))

where c1 6= 0, c2, c3 ∈ R,(see figure 1.a),

(iv) M is a K−flat spacelike tubular surface if and only if M is a parabolic cy-
clinder and its position vector is

C(s, t) = (s, c1c2 cosh(t)∓c1
√

(c2)2 + 1 sinh(t),∓c1
√

(c2)2 + 1 cosh(t)+c1c2 sinh(t))

where c1 ∈ R+, c2 ∈ R, (see figure 1.b),

(v) All the spacelike tubes with spacelike centered curve are positive-constant mean
curvature surfaces.

In the case that C(s, t) is spacelike canal surface and centered curve is a timelike
curve, we can write:

(2.17) g (C (s, t)− γ (s) , C (s, t)− γ (s)) = ϕ2 (s, t)− ω2 (s, t) = −r2 (s) .

By differentiating (2.17) with respect to s and t, we get

(2.18) ω (s, t)ωs (s, t)− ϕ (s, t)ϕs (s, t) = r′ (s) r (s)

(2.19) ω (s, t)ωt (s, t)− ϕ (s, t)ϕt (s, t) = 0

then, we obtain

ω (s, t) = r (s) cosh(t) , ϕ (s, t) = r (s) sinh(t)

by using (2.17), (2.18) and (2.19).
Thus, we have the following corollary.

Corollary 2.4. Let γ (s) be an admissible timelike curve with arclenght parameter
in pseudo-Galilean 3-space. Then, position vector of spacelike canal surface with
timelike centered curve is

(2.20) C (s, t) = γ (s) + r (s) sinh(t)N (s) + r (s) cosh(t)B (s) .
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From (2.5) and (2.20), natural bases {Cs, Ct} are

Cs = T (s) + {r′ sinh(t) + rτ cosh(t)}N(s) + {r′ cosh(t) + rτ sinh(t)}B(s)

Ct = r cosh(t)N(s) + r sinh(t)B(s)

and from (2.7) the coefficients hij and gi are

h11 = r2 (s) τ2 (s)− (r′ (s))
2

, h12 = h21 = r2 (s) τ (s) , h22 = r2 (s)

g1 = 1, g2 = 0.

Thus, the first fundamental form is

IC =
(

1 + r2 (s) τ2 (s)− (r′ (s))
2
)
ds2 + 2r2 (s) τ (s) dsdt+ r2 (s) dt2.

By using (2.5), the second derivations (2.20) are

Css =
{
κ+

(
r′′ + rτ2

)
sinh(t) + (2r′τ + rτ ′) cosh(t)

}
N(s)

+
{(
r′′ + rτ2

)
cosh(t) + (2r′τ + rτ ′) sinh(t)

}
B(s)

Ctt = r sinh(t)N(s) + r cosh(t)B(s)

Cts = {r′ cosh(t) + rτ sinh(t)}N(s) + {r′ sinh(t) + rτ cosh(t)}B(s)

the unit normal vector is

η (s, t) = sinh(t)N (s) + cosh(t)B (s) .

From (2.9), the coefficients Lij are

L11 = κ (s) sinh(t)− r (s) τ2 (s)− r′′ (s) , L12 = L21 = −r (s) τ (s) , L22 = −r (s)

and so the second fundamental form is

IIC =
(
κ (s) sinh(t)− r (s) τ2 (s)− r′′ (s)

)
ds2 − 2r (s) τ (s) dsdt− r (s) dt2.

From (2.8) and (2.10), Gauss and mean curvatures are

(2.21) K (s, t) =
κ (s) sinh(t)− r′′ (s)

r (s)
, H (s, t) =

1

2r (s)

respectively. In the case that K (s, t) = 0, the centered curve has to be planar and
there are two K-flat canal surfaces for r(s) = c1s+ c2 and r(s) = c.

Hence, from (2.2), (2.3), (2.4), (2.20) and (2.21), we have the following cases.

Theorem 2.5. Let M be a spacelike canal surface with timelike centered curve in
pseudo-Galilean 3-space. Then, the followings are true.

(i) There is no minimal spacelike canal surface with timelike centered curve,
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(ii) Gauss and mean curvatures of M satisfy the relation

K (s, t) + 2H (s, t) (κ sinh(t)− r′′) = 0,

(iii) M is a K−flat if and only if M is a parabolic cone and its position vector is

C(s, t) = (s, (c1s+ c2)(c3 sinh(t)∓
√

(c3)2 − 1 cosh(t))

, (c1s+ c2)(∓
√

(c3)2 − 1 sinh(t) + c3 cosh(t)))

where c1 6= 0, c2 ∈ R, c3 ∈ R− [0, 1), (see figure 2.a),

(iv) M is a K−flat spacelike tubular surface if and only if M is a parabolic cy-
clinder and its position vector is

C(s, t) = (s, c1c2 sinh(t)∓c1
√

(c2)2 − 1 cosh(t),∓c1
√

(c2)2 − 1 sinh(t)+c1c2 cosh(t))

where c1 ∈ R+, c2 ∈ R− [0, 1), (see figure 2.b),

(v) All the spacelike tubes with timelike centered curve are positive-constant mean
curvature surfaces.

Accordingly, in the case that C (s, t)−γ (s) is an isotropic radius vector of S1
±(r)

then, the envelope of a 1-parameter family s→ S1
±(r) in G1

3 is timelike canal surface
and since C (s, t)−γ (s) ∈ Sp {T (s) , N (s) , B (s)} and C (s, t) is non-isotropic then,
we have (2.11) and ψ (s, t) = 0. If the centered curve is a timelike curve then, the
position vector C (s, t) is obtained in the same form of (2.15). From (2.7) and (2.9),
coefficients of the first and the second fundamental forms are obtained as

h11 = (r′ (s))
2 − r2 (s) τ2 (s) , h12 = h21 = −r2 (s) τ (s) , h22 = −r2 (s)

L11 = κ (s) cosh(t) + r (s) τ (s)
2

+ r′′ (s) , L12 = L21 = r (s) τ (s) , L22 = r (s)

and also from (2.8) and (2.10), the Gauss and the mean curvatures are

(2.22) K (s, t) = −κ (s) cosh(t) + r′′ (s)

r (s)
, H (s, t) = − 1

2r (s)
.

Thus, from (2.2), (2.3), (2.4), (2.15) and (2.22), we can give the following corollary.

Corollary 2.6. Let M be a timelike canal surface with timelike centered curve in
pseudo-Galilean 3-space. Then, the followings are true.

(i) There is no minimal timelike canal surface with timelike centered curve,

(ii) Gauss and mean curvatures of M satisfy the relation

K (s, t)− 2H (s, t) (κ (s) cosh(t) + r′′ (s)) = 0,
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(iii) M is a K−flat if and only if M is a parabolic cone and its position vector is

C(s, t) = (s, (c1s+ c2)(c3 cosh(t)∓
√

(c3)2 − 1 sinh(t))

, (c1s+ c2)(∓
√

(c3)2 − 1 cosh(t) + c3 sinh(t)))

where c1 6= 0, c2, c3 ∈ R− [0, 1), (see figure 3.a),

(iv) M is a K−flat timelike tubular surface if and only if M is a parabolic cyclin-
der and its position vector is

C(s, t) = (s, c1c2 cosh(t)∓c1
√

(c2)2 − 1 sinh(t),∓c1
√

(c2)2 − 1 cosh(t)+c1c2 sinh(t))

where c1 ∈ R+, c2 ∈ R− [0, 1), (see figure 3.b),

(v) All the timelike tubes with timelike centered curve are negative-constant mean
curvature surfaces.

If the centered curve is a spacelike curve then, the position vector C (s, t) is
obtained in the same form of (2.20) and from (2.7) and (2.9), coefficients of the first
and the second fundamental forms are

h11 = (r′ (s))
2 − r2 (s) τ2 (s) , h12 = h21 = −r2 (s) τ (s) , h22 = −r2 (s)

L11 = κ (s) sinh(t)− r (s) τ2 (s)− r′′ (s) , L12 = L21 = −r (s) τ (s) , L22 = −r (s)

and also from (2.8) and (2.10), the Gauss and the mean curvatures are

(2.23) K (s, t) =
r′′ (s)− κ (s) sinh(t)

r (s)
, H (s, t) =

−1

2r (s)
.

We have the following cases, by using the equations (2.2), (2.3), (2.4), (2.20) and
(2.23).

Corollary 2.7. Let M be a timelike canal surface with spacelike centered curve in
pseudo-Galilean 3-space. Then, the followings are true.

(i) There is no minimal timelike canal surface with spacelike centered curve,

(ii) Gauss and mean curvatures of M satisfy the relation

K (s, t) + 2H (s, t) (r′′ (s)− κ (s) sinh(t)) = 0,

(iii) M is a K−flat if and only if M is a parabolic cone and its position vector is

C(s, t) = (s, (c1s+ c2)(c3 sinh(t)∓
√

(c3)2 + 1 cosh(t))

, (c1s+ c2)(∓
√

(c3)2 + 1 sinh(t) + c3 cosh(t)))

where c1 6= 0, c2 ∈ R, c3 ∈ R, (see figure 4.a),
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(iv) M is a K−flat timelike tubular surface if and only if M is a parabolic cyclin-
der and its position vector is

C(s, t) = (s, c1c2 sinh(t)∓c1
√

(c2)2 + 1 cosh(t),∓c1
√

(c2)2 + 1 sinh(t)+c1c2 cosh(t))

where c1 ∈ R+, c2 ∈ I, (see figure 4.b),

(v) All the timelike tubes with spacelike centered curve are negative-constant mean
curvature surfaces.

Now, we can summarise our study as in following theorem.

Theorem 2.8. Let γ : (a, b)→ G1
3 be an admissible curve in G1

3 and M be a canal
surface with the centered curve γ (s) then, there are two types canal surfaces in G1

3

such that,
type-1: M is spacelike (timelike) canal surface and γ (s) is spacelike (timelike) curve
then, M is parametrized by

Cµ (s, t) = γ (s) + r (s) cosh(t)N (s) + r (s) sinh(t)B (s) ,

type-2: M is spacelike (timelike) canal surface and γ (s) is timelike (spacelike) curve
then, M is parametrized by

Cσ (s, t) = γ (s) + r (s) sinh(t)N (s) + r (s) cosh(t)B (s) .

In consideration of above theorem, we can give coefficients of the first funda-
mental forms, Gauss and mean curvatures as follow by taking g1 = 1, g2 = 0.

For the type-1 canal surfaces,

h11 = µr (s)
2
τ (s)

2
, h21 = h12 = µr (s)

2
τ (s) , h22 = µr (s)

2
,

Gauss and mean curvatures are

K (s, t) =
µ (r′′ (s) + κ (s) cosh(t))

r (s)
, H (s, t) =

µ

2r (s)
.

For the type-2 canal surfaces,

h11 = σr (s)
2
τ (s)

2
, h12 = h21 = σr (s)

2
τ (s) , h22 = σr (s)

2
,

Gauss and mean curvatures are

K (s, t) =
σ (r′′ (s) + κ (s) cosh(t))

r (s)
, H (s, t) =

σ

2r (s)

where

µ =

{
1,
−1,

if M is a spacelike canal surface with spacelike centered curve
if M is a timelike canal surface with timelike centered curve

and

σ =

{
1,
−1,

if M is a spacelike canal surface with timelike centered curve
if M is a timelike canal surface with spacelike centered curve.
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(a) (b)

Figure 1: For (a); c1 = 2, c2 = 1, c3 = 0, sign : (−), for (b); c1 = 2, c2 = 1.

(a) (b)

Figure 2: For (a); c1 = c2 = 1, c3 = 0, for (b); c1 = 1, c2 = 2.

(a) (b)

Figure 3: For (a); c1 = c2 = 1, c3 = 2, for (b); c1 = 1, c2 = 2.



Canal Surfaces in Pseudo-Galilean 3-Spaces 373

(a) (b)

Figure 4: For (a); c1 = 2, c2 = c3 = 1, for (b); c1 = 2, c2 = 0.
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