Canal Surfaces in Galilean 3-Spaces

Yilmaz Tunçer
Department of Mathematics, Usak University, Usak 64200, Turkey
e-mail: yilmaz.tuncer@usak.edu.tr

Abstract. In this paper, we defined the admissible canal surfaces with isotropic radious vector in Galilean 3-spaces an we obtained their position vectors. Also we gave some important results by using their Gauss and mean curvatures.

1. Introduction

A canal surface is defined as envelope of a one-parameter set of spheres, centered at a spine curve $\gamma(s)$ with radius $r(s)$. When $r(s)$ is a constant function, the canal surface is the envelope of a moving sphere and is called a pipe surface. Canal surfaces have wide applications in CAGD, such as construction of blending surfaces, shape reconstruction, transition surfaces between pipes, robotic path planning, etc. . An envelope of a 1-parameter family of surfaces is constructed in the same way that we constructed a 1 -parameter family of curves. The family is described by a differentiable function $F(x, y, z, \lambda)=0$, where λ is a parameter. When λ can be eliminated from the equations

$$
F(x, y, z, \lambda)=0
$$

and

$$
\frac{\partial F(x, y, z, \lambda)}{\partial \lambda}=0
$$

we get the envelope, which is a surface described implicitly as $G(x, y, z)=0$. For example, for a 1-parameter family of planes we get a develople surface([1], [2], [3], [5], [7] and [9]).

A general canal surface is an envelope of a 1-parameter family of surface. The envelope of a 1-parameter family $s \longrightarrow S^{2}(s)$ of spheres in $I R^{3}$ is called a general canal surface [3]. The curve formed by the centers of the spheres is called center curve of the canal surface. The radius of general canal surface is the function r such that $r(s)$ is the radius of the sphere $S^{2}(s)$. Suppose that the center curve of

Received July 14, 2016; accepted December 29, 2016.
2010 Mathematics Subject Classification: 53A35, 53B25.
Key words and phrases: Galilean Space, Canal Surface, Tubular Surface.
a canal surface is a unit speed curve $\alpha: I \rightarrow I R^{3}$. Then the general canal surface can be parametrized by the formula

$$
\begin{equation*}
C(s, t)=\alpha(s)-R(s) T-Q(s) \cos (t) N+Q(s) \sin (t) B, \tag{1.1}
\end{equation*}
$$

where

$$
\begin{gathered}
R(s)=r(s) r^{\prime}(s), \\
Q(s)= \pm r(s) \sqrt{1-r^{\prime}(s)^{2}} .
\end{gathered}
$$

All the tubes and the surfaces of revolution are subclass of the general canal surface.

Theorem 1.1([3]). Let M be a canal surface. The center curve of M is a straight line if and only if M is a surface of revolution for which no normal line to the surface is parallel o the axis of revolution. The following conditions are equivalent for a canal surface M :
i. M is a tube parametrized by (1.1);
ii. the radius of M is constant;
iii. the radius vector of each sphere in family that defines the canal surface M meets the center curve orthogonally.

2. Canal Surfaces in Galilean Space

The Galilean space G_{3} is a Cayley-Klein space defined from a 3 -dimensional projective space $P(R 3)$ with the absolute figure that consists of an ordered triple $\{\omega, f, I\}$, where ω is the ideal (absolute) plane, f the line (absolute line) in ω and I the fixed elliptic involution of points off. We introduce homogeneous coordinates in G_{3} in such a way that the absolute plane ω is given by $x_{0}=0$, the absolute line f by $x_{0}=x_{1}=0$ and the elliptic involution by $\left(0: 0: x_{2}: x_{3}\right) \longmapsto\left(0: 0: x_{3}:-x_{2}\right)$. With respect to the absolute figure, there are two types of lines in the Galilean space, isotropic lines which intersect the absolute line f and non-isotropic lines which do not. A plane is called Euclidean if it contains f, otherwise it is called isotropic. In the given affine coordinates, isotropic vectors are of the form $(0, y, z)$, whereas Euclidean planes are of the form $x=k, k \in R$.

The scalar product in Galilean space G_{3} is defined by

$$
g(A, B)= \begin{cases}a_{1} b_{1}, & \text { if } \quad a_{1} \neq 0 \vee b_{1} \neq 0, \\ a_{2} b_{2}+a_{3} b_{3}, & \text { if } a_{1}=0 \wedge b_{1}=0,\end{cases}
$$

where $A=\left(a_{1}, a_{2}, a_{3}\right)$ and $B=\left(b_{1}, b_{2}, b_{3}\right)$.The Galilean cross product is defined by

$$
A \wedge_{G_{3}} B=\left|\begin{array}{ccc}
0 & e_{2} & e_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|, \quad \text { if } \quad a_{1} \neq 0 \vee b_{1} \neq 0
$$

The unit Galilean sphere is defined by

$$
S_{ \pm}^{2}=\left\{X \in G_{3} \mid g(X, X)=\mp r^{2}\right\} .
$$

An admissible curve $\alpha: I \subseteq R \rightarrow G_{3}$ in the Galilean space G_{3} which parameterized by the arc length s defined by

$$
\begin{equation*}
\alpha(s)=(s, y(s), z(s)) \tag{2.1}
\end{equation*}
$$

where s is a Galilean invariant and the arc length on α. The curvature $\kappa(s)$ and the torsion $\tau(s)$ are defined by

$$
\begin{equation*}
\kappa(s)=\sqrt{\left(y^{\prime \prime}(s)\right)^{2}+\left(z^{\prime \prime}(s)\right)^{2}}, \quad \tau(x)=\frac{\operatorname{det}\left(\alpha^{\prime}(s), \alpha^{\prime \prime}(s), \alpha^{\prime \prime \prime}(s)\right)}{\kappa^{2}(s)} \tag{2.2}
\end{equation*}
$$

The orthonormal frame in the sense of Galilean space G_{3} is defined by

$$
\begin{align*}
T(s) & =\alpha^{\prime}(s)=\left(1, y^{\prime}(s), z^{\prime}(s)\right) \tag{2.3}\\
N(s) & =\frac{1}{\kappa(s)}\left(0, y^{\prime \prime}(s), z^{\prime \prime}(s)\right) \\
B(s) & =\frac{1}{\kappa(s)}\left(0,-z^{\prime \prime}(s), y^{\prime \prime}(s)\right)
\end{align*}
$$

The vectors T, N and B in (2.3) are called the vectors of the tangent, principal normal and the binormal line of α, respectively. They satisfy the following Frenet equations

$$
\begin{equation*}
T^{\prime}=\kappa N, N^{\prime}=\tau B, B^{\prime}=-\tau N \tag{2.4}
\end{equation*}
$$

A C^{r}-surface $M, r \geq 1$, immersed in the Galilean space, $\mathrm{x}: U \rightarrow M, U \subset R^{2}$,

$$
\mathrm{x}(u, v)=(x(u, v), y(u, v), z(u, v))
$$

has the following first fundamental form

$$
I=\left(g_{1} d u+g_{2} d v\right)^{2}+\epsilon\left(h_{11} d u^{2}+2 h_{12} d u d v+h_{22} d v^{2}\right)
$$

where the symbols $g_{i}=x_{i}$ and $h_{i j}=g\left(\widetilde{\mathrm{x}}_{i}, \widetilde{\mathrm{x}}_{j}\right)$ stand for derivatives of the first coordinate function $x(u, v)$ with respect to u, v and for the Euclidean scalar product of the projections $\widetilde{\mathrm{x}}_{k}$ of vectors x_{k} onto the $y z$-plane, respectively. Furthermore,

$$
\epsilon= \begin{cases}0, & \text { if direction } d u: d v \text { is non-isotropic } \\ 1, & \text { if direction } d u: d v \text { is isotropic }\end{cases}
$$

In every point of a surface there exists a unique isotropic direction defined by $g_{1} d u+g_{2} d v=0$. In that direction, the arc length is measured by

$$
\begin{aligned}
d s^{2} & =h_{11} d u^{2}+2 h_{12} d u d v+h_{22} d v^{2} \\
& =\frac{1}{\left(g_{1}\right)^{2}}\left\{h_{11}\left(g_{2}\right)^{2}-2 h_{12} g_{1} g_{2}+h_{22}\left(g_{1}\right)^{2}\right\} d v^{2} \\
& =\frac{W^{2}}{\left(g_{1}\right)^{2}} d v^{2}, \quad g_{1} \neq 0,
\end{aligned}
$$

where

$$
\begin{gathered}
h_{11}=\frac{x_{2}^{2}}{W^{2}}, \quad h_{12}=-\frac{x_{1} x_{2}}{W^{2}}, \quad h_{12}=\frac{x_{1}^{2}}{W^{2}}, \\
x_{1}=\frac{\partial x}{\partial u}, \quad x_{2}=\frac{\partial x}{\partial v}, \quad W^{2}=\left(x_{2} \mathrm{x}_{1}-x_{1} \mathrm{x}_{2}\right)^{2} .
\end{gathered}
$$

A surface is called admissible if it has no Euclidean tangent planes. Therefore, for an admissible surface $g_{1} \neq 0$ or $g_{2} \neq 0$ holds. An admissible surface can always locally be expressed as $z=f(x, y)$.

The Gaussian K and mean curvature H are C^{r-2}-functions, $r \geq 2$, defined by

$$
K=\frac{L_{11} L_{22}-L_{12}^{2}}{W^{2}}, \quad H=\frac{\left(g_{2}\right)^{2} L_{11}-2 g_{1} g_{2} L_{12}+(g 1)^{2} L_{22}}{2 W^{2}},
$$

where

$$
L_{i j}=g\left(\frac{x_{1} \mathrm{x}_{i j}-x_{i j} \mathrm{x}_{1}}{x_{1}}, \eta\right), \quad x_{1}=g_{1} \neq 0 .
$$

The unit normal vector η given by an isotropic vector is defined by

$$
\eta=\frac{\mathrm{x}_{1} \wedge_{G_{3}} \mathrm{x}_{2}}{W}=\frac{1}{W}\left(0,-x_{2} z_{1}+x_{1} z_{2}, x_{2} y_{1}-x_{1} y_{2}\right)
$$

([4], [6], [8]).
In Galilean geometry, there are two types sphere depending radious vector whether it is a isotropic or non-isotropic. Spheres with non-isotropic radious vector are Euclidean circles in yoz-plane and spheres with isotropic radious vector are parallel planes such as $x= \pm r$. We denote the Euclidean circles by $S_{ \pm}^{1}(s)$.
Definition 2.1. The envelope of a 1-parameter family $s \rightarrow S_{ \pm}^{1}(s)$ of the circles in G_{3} is called a canal surface in Galilean 3 -space. The curve formed by the centers of the Euclidean circles is called center curve of the canal surface. The radius of the canal surface is the function r such that $r(s)$ is the radius of the Euclidean circles $S_{ \pm}^{1}(s)$.

Let $\gamma(s)$ be an admissible curve as centered curve and canal surface is a patch that parametrizes the envelope of Euclidean circles which can be defined as

$$
\begin{equation*}
C(s, t)=\gamma(s)+\psi(s, t) T(s)+\varphi(s, t) N(s)+\omega(s, t) B(s) \tag{2.5}
\end{equation*}
$$

with the regularity conditions $C_{s} \neq 0, C_{t} \neq 0$ and $C_{s} \times C_{t} \neq 0$, where $\varphi(s, t)$ and $\omega(s, t)$ are C^{∞}-functions of s and t. Since $C(s, t)-\gamma(s)$ is the surface normal of $S_{ \pm}^{1}(s)$ and $C(s, t)$ is non-isotropic then $\psi(s, t)=0$ and

$$
\begin{equation*}
g(C(s, t)-\gamma(s), C(s, t)-\gamma(s))=\varphi(s, t)^{2}+\omega(s, t)^{2}=r(s)^{2} \tag{2.6}
\end{equation*}
$$

and by differentiating (2.6) with respect to s and t we get

$$
\begin{equation*}
\varphi_{t}(s, t) \varphi(s, t)+\omega_{t}(s, t) \omega(s, t)=0, \tag{2.7}
\end{equation*}
$$

$$
\begin{gather*}
\varphi_{s}(s, t) \varphi(s, t)+\omega_{s}(s, t) \omega(s, t)=r^{\prime}(s) r(s), \tag{2.8}\\
g\left(C(s, t)-\gamma(s), C_{s}(s, t)\right)=0, \tag{2.9}\\
g\left(C(s, t)-\gamma(s), C_{t}(s, t)\right)=0, \tag{2.10}
\end{gather*}
$$

and also we find the funcions $\varphi(s, t)$ and $\omega(s, t)$ are

$$
\varphi(s, t)=r(s) \cos (t), \omega(s, t)=r(s) \sin (t)
$$

by using (2.6), (2.7) and (2.8). Thus, we give the following corollary.
Corollary 2.2. Let $\gamma(s)$ be an admissible curve. Then the position vector of canal surface with isotropic radious vector and centered curve $\gamma(s)$ is

$$
\begin{equation*}
C(s, t)=\gamma(s)+r(s) \cos (t) N(s)+r(s) \sin (t) B(s) . \tag{2.11}
\end{equation*}
$$

The natural basis $\left\{C_{s}, C_{t}\right\}$ are given by

$$
\begin{align*}
C_{s} & =T+\left\{r^{\prime} \cos (t)-r \tau \sin (t)\right\} N+\left\{r^{\prime} \sin (t)+r \tau \cos (t)\right\} B, \tag{2.12}\\
C_{t} & =-r \sin (t) N+r \cos (t) B .
\end{align*}
$$

From (2.4) and (2.12), the components $h_{i j}$ and g_{i} are

$$
\begin{gathered}
h_{11}=\left(r^{\prime}(s)\right)^{2}+r^{2}(s) \tau^{2}(s), \quad h_{12}=r^{2}(s) \tau(s), \quad h_{22}=r^{2}(s), \\
g_{1}=1, \quad g_{2}=0 .
\end{gathered}
$$

Thus, the first fundamental form of canal surface is

$$
I_{C}=\left(1+\left(r^{\prime}(s)\right)^{2}+r^{2}(s) \tau^{2}(s)\right) d u^{2}+2 r^{2}(s) \tau(s) d u d v+r^{2}(s) d v^{2} .
$$

By using (2.4), the second derivations of (2.12)

$$
\begin{align*}
C_{s s} & =\left\{\kappa+\left(r^{\prime \prime}-r \tau^{2}\right) \cos (t)-\left(2 r^{\prime} \tau+r \tau^{\prime}\right) \sin (t)\right\} N \tag{13}\\
& +\left\{\left(2 r^{\prime} \tau+r \tau^{\prime}\right) \cos (t)+\left(r^{\prime \prime}-r \tau^{2}\right) \sin (t)\right\} B \\
C_{t t} & =-r \cos (t) N-r \sin (t) B \\
C_{s t} & =-\left(r^{\prime} \sin (t)+r \tau \cos (t)\right) N+\left(r^{\prime} \cos (t)-r \tau \sin (t)\right) B
\end{align*}
$$

and the unit normal vector

$$
\eta(s, t)=-\cos (t) N(s)-\sin (t) B(s)
$$

coefficients $L_{i j}$ are

$$
L_{11}=-\left\{\kappa(s) \cos (t)+r^{\prime \prime}(s)-r(s) \tau^{2}(s)\right\}, \quad L_{12}=r(s) \tau(s), \quad L_{22}=r(s)
$$

so the second fundamental form is

$$
I I_{C}=-\left\{\kappa(s) \cos (t)+r^{\prime \prime}(s)-r(s) \tau(s)^{2}\right\} d u^{2}+2 r(s) \tau(s) d u d v+r(s) d v^{2}
$$

The Gauss curvature and mean curvature of a non-isotropic canal surface in the Galilean space are given by

$$
K(s, t)=\frac{r^{\prime \prime}(s)-\kappa(s) \cos (t)}{r(s)}, \quad H(s, t)=\frac{1}{2 r(s)} .
$$

In the case $K(s, t)=0$, the centered curve has to be planar and there are two K-flat canal surfaces for $r(s)=c_{1} s+c_{2}$ and $r(s)=c$. Thus, we conclude the following cases.
Theorem 2.3. Let M be a canal surface in Galilean 3-space. Then followings are true.
i. There is no minimal canal surface.
ii. The Gauss and mean curvatures of canal surface satisfy the relation

$$
K(s, t)+2 H(s, t)\left\{\kappa(s) \cos (t)-r^{\prime \prime}(s)\right\}=0
$$

iii. M is a K-flat canal surface if and only if M is a elliptic cone and its position vector is

$$
\begin{aligned}
C(s, t)= & \left(s,\left(c_{1} s+c_{2}\right)\left(c_{3} \cos (t) \mp \sqrt{1-\left(c_{3}\right)^{2}} \sin (t)\right.\right. \\
& \left.,\left(c_{1} s+c_{2}\right)\left(\mp \sqrt{1-\left(c_{3}\right)^{2}} \cos (t)-c_{3} \sin (t)\right)\right),
\end{aligned}
$$

where $c_{1} \neq 0, c_{2} \in I R, c_{3} \in[0,1]$, see Figure $1(a)$.
iv. M is a K-flat tubular surface if and only if M is a elliptic cyclinder and its position vector is

$$
C(s, t)=\left(s, c_{1} c_{2} \cos (t) \mp c_{1} \sqrt{1-\left(c_{2}\right)^{2}} \sin (t), \mp c_{1} \sqrt{1-\left(c_{2}\right)^{2}} \cos (t)-c_{1} c_{2} \sin (t)\right),
$$

where $c_{1} \in I R^{+}, c_{2} \in[0,1]$, see Figure $1(b)$.
v. All the tubes are surface with constant mean curvature.
On the other hand, a surface is said to be a Weingarten surface if its Gauss and mean curvatures satisfy the Jacobi condition $\Phi(H, K)=K_{t} H_{s}-H_{t} K_{s}=0$. Thus, we can give also following theorem.

Theorem 2.4. Let M be a canal surface in Galilean 3-space. Then M is a Weingarten surface if and only if M is either a tubular surface or a surface of revolution with $r(s)= \pm c_{3} e^{-\left(\frac{c_{2}+s}{c_{1}}\right)}\left(e^{2\left(\frac{c_{2}+s}{c_{1}}\right)}+1\right)$ and $r(s)=c_{1} s+c_{2}$, where $c_{1} \neq 0$, $c_{2} \in I R$ and $c_{3} \in I R^{+}$.
Proof. Let us assume that M be a Weingarten surface. Differentiating $K(s, t)$ and $H(s, t)$ with respect to s and t gives

$$
\begin{gathered}
K_{s}(s, t)=\frac{r^{\prime \prime \prime}(s) r(s)-r^{\prime \prime}(s) r^{\prime}(s)+\left(\kappa(s) r^{\prime}(s)-\kappa^{\prime}(s) r(s)\right) \cos (t)}{r(s)^{2}} \\
K_{t}(s, t)=\frac{r^{\prime \prime}(s)+\kappa(s) \sin (t)}{r(s)}
\end{gathered}
$$

and

$$
H_{s}(s, t)=-\frac{r^{\prime}(s)}{2 r(s)}, H_{t}(s, t)=0
$$

From the Jacobi equation $\Phi(H, K)=K_{t} H_{s}-H_{t} K_{s}=0$, we get

$$
\frac{1}{r(s)^{3}}\left\{\begin{array}{c}
r^{\prime \prime}(s) r^{\prime \prime \prime}(s) r(s)-r^{\prime \prime}(s) r^{\prime \prime}(s) r^{\prime}(s) \\
+\kappa(s)\left\{\begin{array}{c}
r^{\prime \prime \prime}(s) r(s)-r^{\prime \prime}(s) r^{\prime}(s) \\
+\left(\kappa(s) r^{\prime}(s)-\kappa^{\prime}(s) r(s)\right) \cos (t)
\end{array}\right\} \sin (t) \\
+r^{\prime \prime}(s)\left(\kappa(s) r^{\prime}(s)-\kappa^{\prime}(s) r(s)\right) \cos (t)
\end{array}\right\}=0
$$

Since $\{1, \sin (t), \cos (t)\}$ is linearly independent then

$$
\begin{align*}
r^{\prime \prime}(s)\left\{r^{\prime \prime \prime}(s) r(s)-r^{\prime \prime}(s) r^{\prime}(s)\right\} & =0 \\
\kappa(s)\left(r^{\prime \prime \prime}(s) r(s)-r^{\prime \prime}(s) r^{\prime}(s)\right) & =0 \\
\kappa(s)\left(\kappa(s) r^{\prime}(s)-\kappa^{\prime}(s) r(s)\right) & =0 \tag{14}\\
r^{\prime \prime}(s)\left(\kappa(s) r^{\prime}(s)-\kappa^{\prime}(s) r(s)\right) & =0
\end{align*}
$$

If $\kappa(s)$ is non-zero constant then from $(14)_{3}, r(s)$ is non-zero constant. If $\kappa(s)=0$ then from $(14)_{1}$, either $r(s)=c_{1} s+c_{2}$ or

$$
r(s)= \pm c_{3} e^{-\left(\frac{c_{2}+s}{c_{1}}\right)}\left(e^{2\left(\frac{c_{2}+s}{c_{1}}\right)}+1\right)
$$

It is easy to see that the Jacobi equation $\Phi(H, K)=0$ satisfies in each case of $(\kappa(s)$ and $r(s)$ are non-zero constants), $\left(\kappa(s)=0\right.$, and $\left.r(s)=c_{1} s+c_{2}\right)$ and $(\kappa(s)=0$, and $r(s)= \pm c_{3} e^{-\left(\frac{c_{2}+s}{c_{1}}\right)}\left(e^{2\left(\frac{c_{2}+s}{c_{1}}\right)}+1\right)$, for the necessary part. Thus proof is completed.

Acknowledgements. The author is indebted to the referees for helpful suggestions and insights concerning the presentation of this paper.

Figure 1: Some Galilean Canal Surfaces. For (a); $c_{1}=c_{2}=1, c_{3}=1 / 2$, for (b) $c_{1}=1, c_{2}=1 / 2$.

References

[1] S. Aslan and Y. Yaylı, Canal Surfaces with Quaternions, Adv. Appl. Clifford Algebr., 26(2016), 31-38.
[2] R. T. Farouki and R. Sverrisson, Approximation of Rolling-ball Blends for Free-form Parametric Surfaces, Computer-Aided Design, 28(1996), 871-878.
[3] A. Gray, ModernDifferential Geometry of Curves and Surfaces, CRC Press, BocaRaton Ann Arbor London Tokyo, (1993).
[4] Z. M. Sipus and B. Divjak, Translation Surfaces in the Galilean space, Glas. Mat. Ser III, 46(66)(2011), 455-469.
[5] G. Öztürk, B. Bulca, B. K. Bayram and K. Arslan, On Canal Surfaces in E ${ }^{3}$, Selçuk J. Appl. Math., 11(2)(2010), 103-108.
[6] O. Röschel, Die Geometrie des Galileischen Raumes, Forschungszentrum Graz, Mathematisch-Statistische Sektion, Graz, (1985).
[7] Z. Xu, R. Feng and J.-G. Sun, Analytic and Algebraic Properties of Canal Surfaces, J. Comput. Appl. Math., 195(1-2)(2006), 220-228.
[8] D. W. Yoon, On the Gauss Map of Tubular Surfaces in Galilean 3-space, Intern. J. Math. Anal., 8(45)(2014), 2229-2238.
[9] A. Uçum and K. Ilarslan, New Types of Canal Surfaces in Minkowski 3-Space, Adv. Appl. Clifford Algebr., 26(1)(2016), 449-468

