• Title/Summary/Keyword: Tubular joint

Search Result 131, Processing Time 0.03 seconds

Bizarre Parosteal Osteochondromatous Proliferation in the First Metatarsal Bone: A Case Report (제 1 중족골에 발생한 기괴 방골성 골연골성 증식증: 증례 보고)

  • Kim, Woo-Sung;Jung, Yu-Hun;Oh, Sang-Hun;Han, Eun-Mee
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.20 no.2
    • /
    • pp.104-108
    • /
    • 2014
  • Bizarre parosteal osteochondromatous proliferation (Nora's lesion) is a rare benign tumor and known to be primarily occur in the small tubular bone of the hands and feet. However, it is very unusual to be reported that it occurs in metatarsal bone in Korea. Thus, we report this tumor of metatarsal bone including the literature review because we have experienced this example.

Introducing a new all steel accordion force limiting device for space structures

  • Poursharifi, Maryam;Abedi, Karim;Chenaghlou, Mohammadreza;Fleischman, Robert B.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.69-82
    • /
    • 2020
  • A significant defect of space structures is the progressive collapse issue which may restrict their applicability. Force limiting devices (FLDs) have been designed to overcome this deficiency, though they don't operate efficiently in controlling the force displacement characteristics. To overcome this flaw, a new type of FLD is introduced in the present study. The "all steel accordion force limiting device" (AFLD) which consists of three main parts including cylindrical accordion solid core, tubular encasing and joint system is constructed and its behavior has been studied experimentally. To improve AFLD's behavior, Finite element analysis has been carried out by developing models in ABAQUS software. A comprehensive parametric study is done by considering the effective design parameters such as core material, accordion wave length and accordion inner diameter. From the results, it is found that AFLD can obtain a perfect control on the force-displacement characteristics as well as attaining the elastic-perfect plastic behavior. Obtaining higher levels of ultimate load carrying capacity, dissipated energy and ductility ratio can be encountered as the main privileges of this device. Ease of construction and erection are found to be further advantages of AFLD. Based on the obtained results, a procedure for predicting AFLD's behavior is offered.

Numerical analysis of the mechanical behavior of welded I beam-to-RHS column connections

  • Rosa, Rosicley J.R.;Neto, Juliano G.R.
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.185-197
    • /
    • 2019
  • Considering the increasing use of tubular profiles in civil construction, this paper highlights the study on the behavior of welded connections between square hollow section column and I-beam, with emphasis on the assessment of the joint stiffness. Firstly, a theoretical analysis of the welded joints has been done focusing on prescriptions of the technical literature for the types of geometries mentioned. Then, a numerical analysis of the proposed joints were performed by the finite element method (FEM) with the software ANSYS 16.0. In this study, two models were evaluated for different parameters, such as the thickness of the cross section of the column and the sizes of cross section of the beams. The first model describes a connection in which one beam is connected to the column in a unique bending plane, while the second model describes a connection of two beams to the column in two bending planes. From the numerical results, the bending moment-rotation ($M-{\varphi}$) curve was plotted in order to determine the resistant bending moment and classify each connection according to its rotational capacity. Furthermore, an equation was established with the aim of estimating the rotational stiffness of welded I beam-to-RHS column connections, which can be used during the structure design. The results show that most of the connections are semi-rigid, highlighting the importance of considering the stiffness of the connections in the structure design.

Axial impact behavior of confined concrete filled square steel tubes using fiber reinforced polymer

  • Zhang, Yitian;Shan, Bo;Kang, Thomas H.K.;Xiao, Yan
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.165-176
    • /
    • 2021
  • Existing research on confined concrete filled steel tubular (CCFT) columns has been mainly focused on static or cyclic loading. In this paper, square section CCFT and CFT columns were tested under both static and impact loading, using a 10,000 kN capacity compression test machine and a drop weight testing equipment. Research parameters included bonded and unbonded fiber reinforced polymer (FRP) wraps, with carbon, basalt and glass FRPs (or CFRP, BFRP, and GFRP), respectively. Time history curves for impact force and steel strain observed are discussed in detail. Experimental results show that the failure modes of specimens under impact testing were characterized by local buckling of the steel tube and cracking at the corners, for both CCFT and CFT columns, similar to those under static loading. For both static and impact loading, the FRP wraps could improve the behavior and increase the loading capacity. To analyze the dynamic behavior of the composite columns, a finite element, FE, model was established in LS-DYNA. A simplified method that is compared favorably with test results is also proposed to predict the impact load capacity of square CCFT columns.

Numerical studies on axially loaded doubler plate reinforced elliptical hollow section T-joints

  • Sari, Busra;Ozyurt, Emre
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.107-116
    • /
    • 2022
  • This paper presents results of numerical studies completed on unreinforced and doubler plate reinforced Elliptical Hollow Section (EHS) T-joints subjected to axial compressive loading on the brace member. Non-linear finite element (FE) models were developed using the finite element code, ABAQUS. Available test data in literature was used to validate the FE models. Subsequently, a parametric study was carried out to investigate the effects of various geometrical parameters of main members and reinforcement plates on the ultimate capacity of reinforced EHS T-joints. The parametric study found that the reinforcing plate significantly increases the ultimate capacity of EHS T-joints up to twice the capacity of the corresponding unreinforced joint. The thickness and length of the reinforcing plate have a positive effect on the ultimate capacity of Type 1 joints. This study, however, found that the capacity of Type 1 orientation is not dependent on the brace-to-chord diameter ratio. As for type 2 orientations, the thickness and length of the reinforcement have a minimal effect on the ultimate capacity. A new design method is introduced to predict the capacity of the reinforced EHS T-joints Type 1 and 2 based on the multiple linear regression analyses.

Bizarre Parosteal Osteochondromatous Proliferation in the Proximal Phalanx of the Third Toe: A Case Report (제3족지 근위지골에 발생한 기괴성 방골성 골연골성 증식증: 1예 보고)

  • Noh, Haeng-Kee;Jeon, Ho-Seung;Jeon, Seung-Joo;Moon, Chan-Sam;Kang, Seo-Goo;Song, Gyung-Sub
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.17 no.2
    • /
    • pp.91-94
    • /
    • 2011
  • Bizarre parosteal osteochondromatous proliferation (BPOP) otherwise known as Nora's lesion, is a benign surface tumor of the small tubular bone of the hands and feet with high probability of local recurrence. The report of BPOP in the foot is very rare in our country. We report a case of BPOP of proximal phalanx of right $3^{rd}$ toe in 44-year-old female, successfully managed by en-bloc marginal excision with a review of the literatures.

Experimental Study of High-strength Steel CHS X-joints Under Axial Compression (지관 압축을 받는 고강도강 X형 원형강관접합부의 구조적 성능에 대한 실험적 연구)

  • Lee, Cheol Ho;Kim, Seon Hu;Chung, Dong Hyun;Kim, Dae Kyung;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.291-301
    • /
    • 2017
  • Most of current representative design standards worldwide forbid or impose restrictions on the use of high-strength steels for hollow tubular structures. The mechanical background of these limitations appears unclear and unduly conservative, and their validity needs to be re-evaluated. In this study, a total of 9 CHS(Circular Hollow Section) X-joints were tested under axial compression and analyzed to examine if the high-strength steel restrictions specified by current design standards could be relaxed. All the high-strength steel CHS X-joints tested showed satisfactory performance compared to ordinary steel joints in terms of serviceability, ultimate strength, and ductility, although the yield strength of steel was even as high as 800MPa.

Chondromyxoid Fibroma of the Rib Report of one case - (늑골에 발생한 연골점액유사 섬유종 -1예 보고-)

  • Lee, Jae-Wook;Lim, Jae-Ung;Won, Yong-Soon;Kor, Eun-Suk;Shin, Hwa-Kyun
    • Journal of Chest Surgery
    • /
    • v.38 no.11 s.256
    • /
    • pp.788-790
    • /
    • 2005
  • Chondromyxoid fbroma (CMF) is a rare, benign tumor of the bone that represents fewer than $2\%$ of all benign tumors of bone. CMF is most often found in the long tubular bones, especially the tibia and femur near the knee joint. Less common sites included the pelvis, fibula, calcaneus and rib. A 54-year-old male patient presented to us with history of swelling and mild, intermittent local pain without any rise in overlying skin temperature in lateral portion of left 7th rib for one-month duration, which was diagnosed as benign rib tumor by plain chest X-ray and CT scan, and treated successfully by excision of rib with good result. Pathologic diagnosis of this tumor was CMF. Without any medical therapy, there was no evidence of recurrence after operation. We report this case and follow-up of the patient.

An Experimental Study on the Bond Strengths for Concrete Filled Steel Tube Columns using a Push-Out Test (단순가력실험을 통한 콘크리트충전 강관기둥의 부착응력에 관한 연구)

  • Woo, Hae Sung;Kim, Jin Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.481-487
    • /
    • 2002
  • Currently, the load transfer's mechanism from a beam to a column has yet to ve clarified in a concrete filled steel tubular (CFT) structure with a connection type of an exterior diaphragm. The loads for each floor are transferred to the concrete core from a steel beam through ha contacted face between an in-filled concrete and the interior surface of a steel tube. Thus, a Push-Out test was performed to investigate the load transfer mechanism. A total of 30 samples were tested to confirm the bond stress and/or axial load distribution between a steel tube and in-filled concrete for CFT column. The main parameters considered for this study included concrete type, steel tube-shape/length, and the effect of a weld joint wit ha backing strip for a column splice. Test results were summarized to confirm load transfer behavior between a concrete and steel tube for each experimental parameter, using the analytical approach to verify experimental results.

Experimental Study on Bond Behavior of 1/12.5 Scale Model of the Steel Tubular Joint Connection Subjected to Compressive Loads (압축하중을 받는 1/12.5 축소모형 강관 연결부의 부착전단 거동에 대한 실험적 연구)

  • Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.19-26
    • /
    • 2024
  • In this study, the compressive behavior of a 1/12.5 scale model of a wind tower support structure connection was experimentally analyzed. A high-performance cementitious grout with a compressive strength of 140 MPa was used to fill the connection, and experiments were conducted with shear key spacing, the shape, and connection length as variables. When the number of shear keys in the connection is the same, the smaller the spacing of the shear keys than the length of the connection, the higher the shear strength, and for the same spacing and connection length, the higher the height of the shear keys, the higher the strength. In addition, it was found that the strength showed a linear behaviour until the connection slip reached 1.0 mm, and it reached the maximum strength at 7.0 mm connection slip showing a non-linear behaviour as the load increased. It was found that the failure mode changed from interfacial shear failure to grout failure as the strength increased according to the shape and spacing of the shear key, and brittle failure did not occur due to steel fibers.