• Title/Summary/Keyword: Tubular elements

Search Result 60, Processing Time 0.027 seconds

Static behavior of steel tubular structures considering local joint flexibility

  • Wang, Yamin;Shao, Yongbo;Cao, Yifang
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.425-439
    • /
    • 2017
  • As a thin-walled structure, local joint flexibility (LJF) in a tubular structure is prominent, and it may produce significant effect on the static performance for the overall structure. This study presents a simplified analytical model to analyze the static behavior for a steel tubular structure with LJF. The presented model simplifies a tubular structure into a frame model consisted of beam elements with considering the LJFs at the connections between any two elements. Theoretical equations of the simplified analytical model are deduced. Through comparison with 3-D finite element results of two typical planar tubular structures consisted of T- and Y-joints respectively, the presented method is proved to be accurate. Furthermore, the effect of LJF on the overall performance of the two tubular structures (including the deflection and the internal forces) is also investigated, and it is found from analyses of internal forces and deformation that a rigid connection assumption in a frame model by using beam elements in finite element analysis can provide unsafe and inaccurate estimation.

The cyclic behavior of steel-polyoxymethylene composite braces

  • Demir, Serhat
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.591-600
    • /
    • 2019
  • Steel tubular buckling controlled braces are well known as being simple, practical and cost-effective lateral force resisting systems. Although these system features have gained the attention of the researchers over the last decade, steel tubular buckling controlled braces currently have limited application. Indeed, only a few steel tubes tightly encased within each other exist in the steel industry. In this paper, a new and practical design method is proposed in order to better promote the widespeared application for current steel tubular buckling controlled brace applications. In order to reach this goal, a holed-adapter made with polyoxymethylene adaptable to all round and square steel sections, was developed to use as infiller. The research program presents designing, producing and displacement controlled cyclic loading tests of a conventional tubular brace and a buckling controlled composite brace. In addition, numerical analysis was carried out to compare the experimental results. As a result of the experimental studies, buckling was controlled up to 0.88 % drift ratio and the energy dissipation capacity of the conventional tubular brace increased 1.46 times due to the proposed design. The main conclusion of this research is that polyoxymethylene is a highly suitable material for the production of steel tubular buckling controlled braces.

A study on the application of finite element method to analysis of the magnetic flux distribution characteristics of the tubular motor (Tubular motor의 자속분포 특성 해석을 위한 유한요소법 적용연구)

  • 임달호;임태빈
    • 전기의세계
    • /
    • v.30 no.12
    • /
    • pp.811-816
    • /
    • 1981
  • In this paper, the finite element method is applied to find the flux distribution of the magnetic field in the end region of the tubular motor. In order to analyze two-dimensional flux distribution, the r-z domain to be analyzed is subdivided into 56 nodes, 84 elements. In the case of wt=O and .pi./2, the flux distribution is shifted to the edge with frequency (w) and time (t) increase in the edge and the air gap. It is proved that this study does fit the actual phenomena.

  • PDF

High Voltage Electron Microscopy of Structural Patterns of Plastid Crystalline Bodies in Sedum rotundifolium (HVEM에 의한 둥근잎꿩의 비름 (Sedum rotundifolium L.) 색소체의 결정체 구조)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.36 no.2
    • /
    • pp.73-82
    • /
    • 2006
  • Major contributions has been made in cellular ultrastructure studies with the use of high voltage electron microscopy (HVEM) and tomography. Applications of HVEM, accompanied by appropriate image processing, have provided great improvements in the analysis of three-dimensional cellular structures. In the present study, structural patterns of the crystalline bodies that are distinguished in mesophyll plastids of CAM-performing Sedum rotundifolium L., have been investigated using HVEM and tomography. Tilting, and diffraction pattern analysis were performed during the investigation. The titlting was performed at ${\pm}60^{\circ}\;with\;2^{\circ}$ increments while examining serial sections ranging from 0.125 to $1{\mu}m$ in thickness. The young plastids exhibited crystalline inclusion bodies that revealed a peculiar structural pattern. They were irregular in shape and also variable in size. Their structural attributes affected the plastid morphology. The body consisted of a large number of tubular elements, often reaching up to several thousand in number. The tubular elements typically aggregated to form a fluster The elements demonstrated either a parallel or lattice arrangement depending on the sectioning angle. The distance between the elements was approximately 20nm as demonstrated by the diffraction analysis. HVEM examination of the serial sections revealed an occasional fusion or branching of elements within the inclusion bodies. Finally, a three-dimensional reconstruction of the plastid crystalline bodies has been attempted using two different image processing methods.

Finite element simulation for steel tubular members strengthened with FRP under compression

  • El-Kholy, Ahmed M.;Mourad, Sherif A.;Shaheen, Ayman A.;Mohamed, Yomna A.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.569-583
    • /
    • 2019
  • Tubular steel sections are widespread all over the world because of their strength and aesthetic appearance. Tubular steel members may exhibit local buckling such as elephant foot or overall buckling under extreme compression load. Recently, external bonding of fiber reinforced polymers (FRP) sheets for strengthening these members has been explored through experimental research. This paper presents three-dimensional nonlinear finite element analysis (FEA) to investigate the structural behavior of strengthening tubular steel members with FRP against local and overall buckling phenomena. Out-of-roundness and out-of-straightness imperfections were introduced to the numerical models to simulate the elephant foot and overall buckling, respectively. The nonlinear analysis preferences such as the integration scheme of the shell elements, the algorithm for solution of nonlinear equations, the loading procedure, the bisection limits for the load increments, and the convergence criteria were set, appropriately enough, to successfully track the sophisticated buckling deformations. The agreement between the results of both the presented FEA and the experimental research was evident. The FEA results demonstrated the power of the presented rigorous FEA in monitoring the plastic strain distribution and the buckling phenomena (initiation and propagation). Consequently, the buckling process was interpreted for each mode (elephant foot and overall) into three sequential stages. Furthermore, the influence of FRP layers on the nonlinear analysis preferences and the results was presented.

The Elasto-Plastic Buckling Analysis of Ball-jointed Sing1e Layer Latticed Domes Considering the Connection Characteristics (접합부의 성질을 고려한 볼 접합 단층 래티스 돔의 탄소성 좌굴해석)

  • 한상을;권현재;신용환;배상달;이진섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.90-100
    • /
    • 2000
  • The present paper investigates the elasto-plastic buckling of ball-jointed single layer latticed domes considering the connection characteristics. The domes are composed of tubular member elements, ball joints and connectors. To judge yielding of the member, the ends and central part of tubular member elements are assumed as five elasto-plastic springs. Elasto-plastic buckling load can be identified the yielding load of estimated member As a numerical analysis technique, loading incremental method based on the Newton-Raphson method is used. The effects of connection characteristics are investigated by the following points; (1) the length of rigid zone, (2) looseness of screw, (3) diameter of connector Finally, it is emphasized that the connection characteristics as well as the material non-linearity have significant effects upon the buckling toad of domes.

  • PDF

Development of Tubular Shaft for Reduction of Booming Noise in Vehicle Interior (차량 부밍 소음 저감을 위한 중공축 개발)

  • 고강호;국형석;이재형
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.203-208
    • /
    • 2002
  • In order to reduce the booming noise caused by first bending mode of a drive shaft, this paper proposes a simulation program for prediction of the bending mode frequency of any tubular shaft. This program consists of a pre-processor for modeling of geometrical shape of the drive shaft with boundary conditions of various joints, a processor for constructing of global finite element matrices using beam elements and an eigen-solver based on MATLAB program. Using this simulation program, the effective and accurate FE model far a shaft attached to vehicle can be obtained by aid of database for stiffness of each joint. Thus the resonance frequencies and mode shapes of a shaft can be calculated accurately. Because the effect of the resonance on interior noise can be verified, more improved shaft will be proposed at the early stage of design.

Comparative structural analysis of lattice hybrid and tubular wind turbine towers

  • Kumaravel, R.;Krishnamoorthy, A.
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • This paper presents a comparative structural analysis of lattice hybrid tower with six legs with conventional tubular steel tower for an onshore wind turbine using finite element method. Usually a lattice hybrid tower will have a conventional industry standard 'L' profile section for the lattice construction with four legs. In this work, the researcher attempted to identify and analyze the strength of six legged lattice hybrid tower designed with a special profile instead of four legged L profile. And to compare the structural benefits of special star profile with the conventional tubular tower. Using Ansys, a commercial FEM software, both static and dynamic structural analyses were performed. A simplified finite element model that represents the wind turbine tower was created using Shell elements. An ultimate load condition was applied to check the stress level of the tower in the static analysis. For the dynamic analysis, the frequency extraction was performed in order to obtain the natural frequencies of the tower.

A Study on Women's Underwear Structures by Ideal Beauty - Focused on the Former Period of 20th Century - (이상미에 따른 여성 속옷 구성에 관한 연구(1) - 20세기 전기를 중심으로-)

  • 김지연;전혜정
    • Journal of the Korean Society of Costume
    • /
    • v.53 no.3
    • /
    • pp.137-154
    • /
    • 2003
  • The purpose of this study is firstly to survey the social and cultural background of 20th century and women's status, and to identify what the ideal body is like and what the elements of outer garment and underwear are and the techniques to incarnate the ideal beauty. Various papers are referenced for theoretical study and the elements and techniques of underwear are analyzed based on photographical materials. This paper concludes as follows. In 1910's, ideal beauty has changed to H-style. In other words, the outer garment has confined the lower part of the body with plain H-type Hobble silhouette to express plump bust, somewhat slim waist, and small hips, As the underwears, cylindrical corsets which fasten from under the bust down to lap, brassiere which are helpful for plump bust, and artificial busts were worn. In 1920's, outer garment were Straight box silhouette style which were cut as tubular without dart, and the underwears were corselets which have been tubular from the bust to hip and the tubular chemi-knickers. The former corsets which had been hard-boned and been fastened with strings have been replaced by the hook closure due to the development of elastic joining method. In 1930's, women pursued perfect body showing the line of bust, waist, and hip. In order to express elegant beauty of female of Slim and long silhouette, Doter and underwear have been cut with bias and gore, and soft and flexible materials were flowed along the body. World war II in 1940's has made the women as social. Ideal beauty has changed to Short straight box silhouette which no more shows body line. Outer and underwears were simple and Practical style. In 1950's, ideal beauty was well-matured, elegant Women which were represented by round shoulder, conical breast, tiny waist and round hip. Outer garment showed Hourglass silhouette representing the body-tight suits with round shoulder pad and the wide flare skirts. As the underwears, conical brassiere by top circular stitch were preferred for plump and bulged bust and tight corsets for tiny waist and magnificent petticoats were worn.

Spectral Analysis of $CO_2$ Corrosion Product Scales on 13Cr Tubing Steel

  • Lin, Guan-fa;Xu, Xun-yuan;Bai, Zhen-quan;Feng, Yao-rong
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.201-207
    • /
    • 2008
  • $CO_2$ corrosion product scales formed on 13 Cr tubing steel in autoclave and in the simulated corrosion environment of oil field are investigated in the paper. The surface and cross-section profiles of the scales were observed by scanning electron microscopy (SEM), the chemical compositions of the scales were analyzed using energy dispersion analyzer of X-ray (EDAX), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to confirm the corrosion mechanism of the 13 Cr steel in the simulated $CO_2$ corrosion environment. The results show that the corrosion scales are formed by the way of fashion corrosion, consist mainly of four elements, i.e. Fe, Cr, C and O, and with a double-layer structure, in which the surface layer is constituted of bulky and incompact crystals of $FeCO_3$, and the inner layer is composed of compact fine $FeCO_3$ crystals and amorphous $Cr(OH)_3$. Because of the characteristics of compactness and ionic permeating selectivity of the inner layer of the corrosion product scales, 13 Cr steel is more resistant in $CO_2$ corrosion environment.