• Title/Summary/Keyword: Tubes

Search Result 3,122, Processing Time 0.025 seconds

Influence of Velocity on Pressure Drop of Flowing Ice Slurry in Elbow and its continued Inclined Tube (곡관과 연속된 경사관 내에서 유동하는 아이스슬러리의 압력손실에 미치는 유속의 영향)

  • Park Ki-Won;Kim Kyu-Mok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.7
    • /
    • pp.635-641
    • /
    • 2005
  • This study experimented to understand the effects of transporting ice slurry through elbow and inclined tube. And at this experiment it used propylene glycol-water solution and a diameter of about 2mm ice particle. The experiments were carried out under various conditions, with velocity of water solution at the entry ranging from 1.0 to 3.5 w/s and elbows and inclined tubes of 4 kinds angle with $30^{\circ},\;45^{\circ},\;90^{\circ}\;and\;180^{\circ}$. The pressure drop between the tube entry and exit were measured. According to angle of bending, the highest pressure drop was measured at $30^{\circ}$ elbow and the lowest pressure drop was measured at $90^{\circ}$ elbow, and there are only a little differences of pressure drop between $45^{\circ}$ elbow and $180^{\circ}$ elbow. According to angle of inclined tube, the highest pressure drop was measured at $90^{\circ}$ inclined tube and the pressure drop at $45^{\circ},\;30^{\circ},\;180^{\circ}$ inclined tubes were lower successively. The lowest pressure drop in elbows and inclined tubes was measured at velocity of $2.0\~2.5$ m/s and concentration of $10\;wt\%$.

A Study of External Condensation Heat Transfer of Flammable Refrigerants (가연성 냉매의 외부 응축 열전달에 관한 연구)

  • 배동수;하종철;유길상;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.522-529
    • /
    • 2004
  • In this study, external condensation heat transfer coefficients (HTCs) of flammable refrigerants of propylene, propane, isobutane, butane, DME, and HFC32 were measured on a horizontal plain tube, 26 fpi low fin tube, and Turbo-C tube. All data were taken at the temperature of 39$^{\circ}C$ with a wall subcooling of 3∼8$^{\circ}C$. Test results showed a typical trend that condensation HTCs of flammable refrigerants decrease with increasing wall subcooling. HFC32 had the highest HTCs among the tested refrigerants showing 44% higher HTCs than those of HCFC22 while DME showed 28% higher HTCs than those of HCFC22. HTCs of propylene and butane were similar to those of HCFC22 while those of propane and isobutane were similar to those of HFC134a. Based upon the tested data, Nusselt's equation is modified to predict the plain tube data within a deviation of 3%. For 26 fpi low fin tube, Beatty and Katz equation predicted the data within a deviation of 7.3% for all flammable refrigerants tested. The heat transfer enhancement factors for the 26 fpi low fin and Turbo-C tubes were 4.6∼5.7 and 4.7∼6.9 respectively for the refrigerants tested indicating that the performance of Turbo-C tube is the best among the tubes tested.

Effect of Compressive Stress on Multiaxial Loading Fracture of Alumina Tubes (알루미나 튜브의 복합하중 파괴에 미치는 압축응력의 영향)

  • Kim, K.T.;Suh, J.
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.10
    • /
    • pp.810-818
    • /
    • 1991
  • Fracture responses of Al2O3 tubes were investigated for various loading paths under combined tension/torsion. The fracture criterion did not depend on loading paths. Fracture angles agreed well with the maximum tensile stress criterion. As the loading condition approaches a shear dominant state, the tensile principal stress at fracture increases compared to the uniaxial fracture strength. By using the Weibull modulus obtained from tension and torsion tests, the Weibull statistical fracture strengths were compared with experimental data. This comparison suggests that fracture may occur at the surface of the specimen when tensile stress is dominant, but within the volume of the specimen when shear stress is dominant. The Weibull fracture strength increased as the loading conition approached a shear dominant state, but underestimated compared to experimental data. Finally, a new fracture criterion was proposed by including the effect of compressive principal stress. The proposed criterion agreed well with experimental data of Al2O3 tubes not only at combined tension/torsion but also at balanced biaxial tension.

  • PDF

A Study on Heat Transfer Enhancement of Oil Cooler (유냉각기의 열전달 촉진에 관한 연구)

  • Cho, D.H.;Lim, T.W.
    • Journal of Power System Engineering
    • /
    • v.15 no.3
    • /
    • pp.25-30
    • /
    • 2011
  • A shell-and-tube oil cooler with plate fins was suggested to improve the defect of the conventional shell-and-tube oil cooler. Experiments were conducted to evaluate the heat transfer performance on the shell side of shell-and-plate finned tube oil cooler with three different tube numbers(9, 13 and 19). Oil flowing on the shell side was cooled by cold water flowing inside the tubes. A shell-and-tube heat exchanger of an oil cooler consisted of one shell pass and two tube passes with the inner tube diameter of 8.82 mm and the tube length of 575 mm. From the experiment of shell-and-tube oil cooler, it was found that the heat transfer coefficient of oil cooler with 9 tubes, as oil flow rate was increased, was approximately 140% and 250% higher than that of 13 and 19 tubes, respectively. The heat transfer coefficient at the water flow rate of $3m^3/h$, also was 120% and 140% higher than that of 2.4 and $1.8m^3/h$, respectively.

Numerical Simulation of Boiling 2-Phase Flow in a Helically-Coiled Tube (나선형코일 튜브 비등2상 유동 수치해석)

  • Jo J. C.;Kim W. S.;Kim H. J.;Lee Y. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.49-55
    • /
    • 2004
  • This paper addresses a numerical simulation of the flow and heat transfer in a simplified model of helically coiled tube steam generator using a general purpose computational fluid dynamic analysis computer code. The steam generator model is comprised of a cylindrical shell and helically coiled tubes. A cold feed water entered the tubes is heated up, evaporates. and finally become a superheated steam with a large amount of heat transferred continuously from the hot compressed water at higher pressure flowing counter-currently through the shell side. For the calculation of tube side two-phase flow field formed by boiling, inhomogeneous two-fluid model is used. Both the internal and external turbulent flows are simulated using the standard k-e model. The conjugate heat transfer analysis method is employed to calculate the conduction in the tube wall with finite thickness and the convections in the internal and external fluids simultaneously so as to match the fluid-wall-fluid interface conditions properly. The numerical calculations are peformed for helically coiled tubes of steam generator at an integral type pressurized water reactor under normal operation. The effects of tube-side inlet flow velocity are discussed in details. The results of present numerical simulation are considered to be physically plausible based on the data and knowledge from previous experimental and numerical studies where available.

  • PDF

Seismic Analysis of Absorber Rod in KMRR Reactivity Control Mechanism (다목적연구로 반응도 제어장치의 제어봉에 대한 내진해석)

  • Cho, Yeong-Carp;Yoo, Bong;Kim, Tae-Ryong;Ahn, Kyu-Suk
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.141-146
    • /
    • 1990
  • This study is on a seismic analysis of absorber rod in KMRR Reactivity Control Mechanism. The model being studied is two coaxial tubes(control absorber rod and flow tube) immersed in the water and partially coupled(overlap) by water gap. The hydrodynamic mass effects by the water in each surrounding conditions are considered in the model. The natural frequencies, stresses and displacements of the system due to Safe Shutdown Earthquake are computed in the cases of in-phase modes and out-of-phase modes of two coaxial tubes. The results show that maximum stresses are well below the allowable limit but the maximum displacements at the ends of both tubes are so much that the absorber rod contacts with the flow tube(or surrounding wall).

  • PDF

Experimental Investigations on the Temperature Characteristics of Oscillating Heat Pipe with Various Filling Ratio

  • Jeong, Hyo-Min;Chung, Han-Shik;Lee, Kwang-Sung;Tanshen, Md.Riyad;Lee, Tae-Jin;Lee, Sin-Il
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.47-53
    • /
    • 2013
  • The article focuses on the Temperature characteristics inside single loop oscillating heat pipe (OHPs). In this paper, heat pipe is experimentally studied thereby providing vital information on the parameter dependency of their thermal performance. The impact depiction has been done for the variation of tube model of the device. OHPs are made of copper capillary tubes of outer diameter 6.25 mm, inner diameter 4 mm heated by constant temperature water bath cooled by ambient temperature. Using four types of OHPs of copper capillary tubes length of 1500mm and HP length 650mm inside tubes working fluid is R-22 Pressure 8 bar and mass 34g,32g,28g,16g. The results indicate a strong influence of filling ratio on the performance.

A collapse Stress Analysis of a Heat Exchanger Subjected to External Pressure in a Nuclear Power Plant

  • Kwon, Jae-Do;Lee, Choon-Yeol;Woo, Seung-Wan
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1216-1224
    • /
    • 2000
  • The collapse pressure of tubes is determined experimentally by Tschoepe and Maison for various materials with different geometries. The results are compared with those obtained by ASME Codes UG-31 and UG-28. A collage pressure is the pressure required for the incipient yielding stress of the tubes with and without ovality. This collapse pressure is compared with the experimental results by Tschoepe and Maison. The present investigation is towards finding the collapse pressure required to bring the entire wall of tubes into a state of plastic flow for the pipes, with ovality and without ovality. This collapse pressure is compared with the collapse pressure obtained through experiments in the present investigation. The experimental results are compared with the pressure obtained by FEM(finite element methods). The FEM results are then compared with results obtained through an approximate plastic analysis of the strain hardening material, SA312-TP304 stainless steel. The structural integrity evaluation is performed for the heat exchanger used in an actual nuclear power plant by using various methods described in this paper. The results obtained by the various analyses and the FEM are discussed. consequently, the paper is oriented towards an actual design purpose of d heat exchanger in an industrial environment, rather than for the purpose of an academic research project investigation.

  • PDF

Pool Boiling Heat Transfer Charcteristics of Low-Fin Tubes in CFC11, HCFC123 and HCFC141b (CFC11, HCFC123, HCFC141b 풀내에서 낮은 핀관의 비등 열전달특성)

  • 김주형;곽태희;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2316-2327
    • /
    • 1995
  • Experimental results from nucleate pool boiling heat transfer with various finned tubes in CFC11, HCF123 and HCFC141b are reported. One plain tube and four low fin tubes of various fin densities were tested in an attempt to find out the optimum fin density in the heat flux range of 10-60 kW/m$^{[-992]}$ at near atmospheric pressure. The results indicated that CFC11 showed the highest heat transfer coefficients. Its alternatives, HCFC123 and HCFC141b, showed 3-5% lower heat transfer coefficients than those of CFC11 at the same heat flux. As the fin density increases, so does the heat transfer surface area. Measured heat transfer coefficients, however, do not necessarily always increase as the fin density increases. This unique phenomenon seems to be caused by the coalescence of the bubblers that prevent the cool liquid from entering into the fin valleys. For all the refrigerants tested, the optimum fin density yielding the highest performance was 28 fins per inch confirming the previous results by other researchers.

Sample Development for Quality Control of Formaldehyde and Proficiency Analytical Testing (정도관리용 포름알데히드 시료개발 및 분석능력평가)

  • Park, Hae Dong;Jang, Miyeon;Park, Seunghyun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.1
    • /
    • pp.58-66
    • /
    • 2020
  • Objectives: The objective of this study was to develop formaldehyde samples for quality control (QC) and to test the applicability of proficiency analytical testing in Korea. Methods: We made formaldehyde samples with certified standard solutions (formaldehyde in water or acetonitrile) and 2,4-dinitrophenylhydrazine (2,4-DNPH)-coated silicagel tubes. Four levels of formaldehyde concentration were tested for storage stability at room temperature and at 4℃ over three months. Analytical proficiency testing was performed with four or 36 institutes. Results: Formaldehyde sample tubes were easily made through the injection of standard solutions and the average efficiencies of recovery were 95-101%. The coefficients of variation (CV) of the formaldehyde samples were 1.39-2.55%. The recovery efficiencies fell between 90% and 110% at the concentration range of 1-10 ㎍/sample over three months storage at refrigerated and room temperature. The CVs were less than 5% in the proficiency analytical testing. By adjusted proficient ranges, 64% of the results of the second proficiency analytical testing were acceptable. Conclusions: The formaldehyde samples made by injection on 2,4-DNPH-coated silicagel tubes were stable and applicable for quality control.