• Title/Summary/Keyword: Tube direction

Search Result 386, Processing Time 0.052 seconds

Three Dimensional Incompressible Unsteady Flows in a Circular Tube Using the Navier-Stokes Equations With Beam and Warming Method (원형관에서의 음해법을 이용한 차원 3차원 비압축성 부정류 흐름에 관한 수치모의)

  • Park, Ki-Doo;Lee, Kil-Seong;Sung, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1624-1629
    • /
    • 2008
  • The governing equations in generalized curvilinear coordinates for a 3D pulsatile flow are the Incompressible Navier-Stokes (INS) equations with the artificial dissipative terms and continuity equation discretized using a second-order accurate, finite volume method on the nonstaggered computational grid. This method adopts a dual or pseudo time-stepping Artificial Compressibility (AC) method integrated in pseudo-time. The computational technique implements the implicit approximate factorization method of the Beam and Warming method (1978), which is the extension of the Alternate Direction Implicit (ADI) method. The algorithm yields practically identical velocity profiles and secondary flows that are in excellent overall agreement with an experimental measurement (Rindt & Steenhoven, 1991).

  • PDF

Hydrodynamic Mass and Damping of Tube Bundles in Two-Phase Cross-Flow (2상 횡유동을 받는 튜브집합체의 추가질량과 감쇠)

  • 김범식;손갑헌;김병구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1128-1146
    • /
    • 1989
  • 본 논문에서는 2상 횡유동의 진동 메카니즘을 규명하기 위한 실험계획의 일환으로 실시된 실험으로 부터 튜브집합체의 추가질량(hydrodynamic mass)과 감쇠 (damping)에 대해 고찰하였다. 실험은 튜브배열과 피치 대 직경비(pitch-over-di- ameter:.rho./d)가 상이한 튜브집합체에 대해 2상 유체를 모의한 공기-물(air-water) 혼합물에서 수행하였다. 액체상태로부터 99%의 보이드율까지 변화된 2상 유체의 유량은 튜브가 유체탄성 불안정성 (fluidelastic instability)에 도달할 때까지 점진적으로 증가하였다.

A Study on Performance-Analysis and Control of the Active Catheter (작동형 내시경의 성능 해석 및 제어에 관한 연구)

  • Cheong, J.P.;Kim, J.H.;Lee, J.M.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.556-561
    • /
    • 2000
  • This paper deals with the control of an active bending actuator fur a catheter. The bending actuator with 40mm in length utilizes three zigzag SMA (shape memory alloy) springs which are equally located in the circumference between inner $({\phi}2.5 mm)$ and outer $({\phi}3.0mm)$ tube. It is purposed on realization of desired bending angle $(90^{\circ})$ and direction $(360^{\circ})$. It is also installed in front of the catheter and used to guide a path at extremely bent or branched blood vessel. The performance-analysis of the bending actuator are investigated fur the purpose of optimizing the control of the bending actuator. The analog joy stick is used to command a bending angle and direction for the fast and accurate response. According to the commands of the joy stick, tensile force of each SMA spring is computed and obtained by controlling the temperature of each SMA spring using PWM (pulse width modulation) of supplied electric power.

  • PDF

Analysis of effectiveness for a stirling machine regenerator (스터링기기 재생기의 유용도 해석)

  • Jo, Gwan-Sik;Lee, Dae-Yeong;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1426-1436
    • /
    • 1996
  • The effectiveness of the regenerator pertaining to Stirling cycle machines is studied by analyzing the heat transfer characteristics of the oscillating flow in a tube, and a new consistent definition of the regenerator effectiveness can be expressed by the ratio of the heat transfer in axial direction (Q$\_$axial/) to that in transverse direction (Q/su w/), and its approximate form is obtained as a function of Nusselt number for practical utility. Since an approximate value of the ratio Q$\_$axial//Qsub w/ can be expressed in terms of the time-averaged rather than transient temperatures, this expression is useful to estimate the heat transfer coefficient in the Stirling machine regenerator experimentally.

Effect of Vapor Flow Direction on Falling Film Heat Transfer in a Coiled Tube Absorber (Part 1: Experiments with Pure Water) (코일형 흡수기에서 증기 유동 방향이 유하액막 열전달에 미치는 영향 (제1부: 물을 이용한 실험))

  • 박경진;권경민;정시영;김병주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.720-729
    • /
    • 2001
  • The effect of vapor flow direction on falling film heat transfer was experimentally investigated by using water. Parallel flow (both water and vapor downwards) showed higher heat exchange performance than counterflow(downward water and upward vapor). The difference became significant as the vapor flow rate was increased. It is supposed that the uprising vapor disturbs the solution film flow and heat transfer is reduced by uneven distribution or detachment of water film.

  • PDF

Growth of Rutile Single Crystal by Floating Zone Method (Floating Zone법에 의한 Rutile($TiO_2$)단결정 육성)

  • 신재혁;강승민;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.1050-1054
    • /
    • 1990
  • Rutile(TiO2) single crystals were grown by FZ method. Feed rod was sintered in the longitudinal tube-shaped furnace at 135$0^{\circ}C$ and optimum growth condition was growth rate 5-8mm/hr, rotation rate 30-40rpm. When crystal was growing, atomosphere was oxidized condition, and grown single crystal was annealed at 110$0^{\circ}C$. The rutile single crystals were oriented to [001] direction and color change of single crystals were related to atmosphere, and difference of electric conductivity and resistance was due to the fact above.

  • PDF

Trends in Multi-Channel Network Industry (MCN 산업 동향 분석)

  • Park, G.M.;Choi, B.C.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.2
    • /
    • pp.22-29
    • /
    • 2018
  • A multi-channel network(MCN) is an organization that works with video platforms, such as YouTube, to offer assistance to channel owners in areas such as "products, programming, funding, cross-promotion, partner management, digital rights management, monetization/sales, and/or audience development" in exchange for a percentage of the ad revenue from the channel. This paper examines the market trends, business trends, and future evolution of an MCN. It also examines the status of the MCN industry in the media industry and the strategic direction for future industry development.

A Study on Optimum Confined Effect for Internally Confined Hollow CFT Columns under Uniaxial Compression (일축압축을 받는 내부 구속 중공 CFT 기둥의 최적 구속 효과 연구)

  • Won, Deok Hee;Han, Taek Hee;Yoon, Na Ri;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.227-235
    • /
    • 2012
  • Recently, study of confining effect in column members is progressed. But these studies are limited to about RC column and external confining effect in hollow columns. Internal confining effect in hollow columns has not researched. Internal confining stress is assumed the same external confining stress in hollow columns. In this study, there are to investigate the internal direction confining effect in ICH CFT column by FEA analysis. FEA analysis methods have verified by experimental values. Parametric study has performed as thickness of internal tube, hollow ratio, diameter of column and bending stiffness between concrete and external tube. Modified equations have suggested to estimating economic and reasonable thickness of internal tube.

Experimental Study about Two-phase Damping Ratio on a Tube Bundle Subjected to Homogeneous Two-phase Flow (균질 2상 유동에 놓인 관군에 작용하는 감쇠비에 대한 실험적 연구)

  • Sim, Woo Gun;Dagdan, Banzragch
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.171-181
    • /
    • 2017
  • Two-phase cross flow exists in many shell-and-tube heat exchangers such as condensers, evaporators, and nuclear steam generators. The drag force acting on a tube bundle subjected to air/water flow is evaluated experimentally. The cylinders subjected to two-phase flow are arranged in a normal square array. The ratio of pitch to diameter is 1.35, and the diameter of the cylinder is 18 mm. The drag force along the flow direction on the tube bundles is measured to calculate the drag coefficient and the two-phase damping ratio. The two-phase damping ratios, given by the analytical model for a homogeneous two-phase flow, are compared with experimental results. The correlation factor between the frictional pressure drop and the hydraulic drag coefficient is determined from the experimental results. The factor is used to calculate the drag force analytically. It is found that with an increase in the mass flux, the drag force, and the drag coefficients are close to the results given by the homogeneous model. The result shows that the damping ratio can be calculated using the homogeneous model for bubbly flow of sufficiently large mass flux.

Numerical Investigation of Transverse Dispersion in Natural Channels (자연하천에서 오염물질의 횡확산에 관한 수치모형)

  • 서일원;김대근
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.151-162
    • /
    • 1995
  • A two-dimensional stream tube dispersion model is developed to simulate accurately transverse dispersion processes of pollutants in natural channels. Two distinct features of the stream tube dispersion model derived herein are that it employs the transverse cumulative discharge as an independent variable replacing the transverse distance and that it is developed in a natural coordinate system which follows the general direction of the channel flow. In the model studied, Eulerian-Lagrangian method is used to solve the stream tube dispersion equation. The stream tube dispersion equation is decoupled into two components by the operator-splitting approach; one is governing advection and the other is governing dispersion. The advection equation has been solved using the method of characteristics and the results are interpolated onto Eulerian grid on which the dispersion equation is solved by centered difference method. In solving the advection equation, cubic spline interpolating polynomials is used. In the present study, the results of the application of this model to a natural channel are compared with a steady-state flow measurements. Simulation results are in good accordance with measured data.

  • PDF