• Title/Summary/Keyword: Tube current

Search Result 921, Processing Time 0.023 seconds

Stress-strain Relations of Concrete Confined with Tubes Having Varying GFRP Layers (수적층 및 필라멘트 와인딩을 이용한 GFRP튜브로 구속된 콘크리트의 압축 거동)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.861-872
    • /
    • 2008
  • Concrete-filled glass fiber reinforced polymer tubes are often used for marine structures with the benefit of good durability and high resistance against corrosion under severe chemical environment. Current research presents results of a comprehensive experimental investigation on the behavior of axially loaded circular concrete-filled glass fiber reinforced polymer tubes. This paper is intended to examine several aspects related to the usage of glass fiber fabrics and filament wound layers used for outer shell of piles subjected to axial compression. The objectives of the study are as follows: (1) to evaluate the effectiveness of filament winding angle of glass fiber layers (2) to evaluate the effect of number of GFRP layers on the ultimate load and ductility of confined concrete (3) to evaluate the effect of loading condition of specimens on the effectiveness of confinement and failure characteristics as well, and (4) to propose a analytical model which describes the stress-strain behavior of the confined concrete. Three different types of glass fiber layers were chosen; fabric layer, ${\pm}45^{\circ}$ filament winding layer, and ${\pm}85^{\circ}$ filament winding layer. They were put together or used independently in the fabrication of tubes. Specimens that have various L:D ratios and different diameters have also been tested. Totally 27 GFRP tube specimens to investigate the tension capacity, and 66 concrete-filled GFRP tube specimens for compression test were prepared and tested. The behavior of the specimens in the axial and transverse directions, failure types were investigated. Analytical model and parameters were suggested to describe the stress-strain behavior of concrete under confinement.

A study on the improvement of the protective shield construction method and explosion-proof tube performance for tunnel blasting (터널 발파에 대한 방호쉴드 공법 및 방폭튜브 성능 개선 연구)

  • Sang-Hwan Kim;Soo-Jin Lee;Jung-Nam Kwon;Dong-gyun Yoo;Yong-Woo Kim;Kwang-Eun Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.285-303
    • /
    • 2023
  • Interest in building underground spaces is increasing for the creation of downtown infrastructure and efficient space utilization. A representative method of utilizing underground space is a tunnel, and in addition to road tunnels, the construction of utility tunnels such as power conduits and utility conduits is gradually increasing. The current basic tunnel construction method can be divided into NATM (New Austrian Tunnelling Method) and TBM (Tunnel Boring Machine). The NATM is a reliable method, but it is accompanied by vibration and noise due to blasting. In the case of the TBM excavation method, there are disadvantages in terms of construction period and construction cost, but it is possible to improve economic feasibility by introducing appropriate complementary methods. In this study, a blasting method was develop using the NATM after TBM pre-excavation using the protective shield method. This is a method that compensates for the disadvantages of each tunnel construction method, and is expected to reduce construction costs, blasting vibration, and noise. In order to review the performance of the developed method, an experiment was conducted to evaluate the performance of explosion-proof tube to which a protective shield scale model was applied, and the impact of blasting vibration of the protective shield method was analyzed.

Experimental Analysis of Large Size Concrete-Filled Glass Fiber Reinforced Composite Piles Subjected to the Flexural Compression (대구경 콘크리트 충전 복합소재 파일의 휨-압축 거동에 대한 실험적 분석)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.519-529
    • /
    • 2009
  • Fiber reinforced composite materials have various advantages in mechanical and chemical aspects. Not only high fatigue and chemical resistance, but also high specific strength and stiffness are attained, and therefore, damping characteristics are beneficial to marine piles. Since piles used for marine structures are subjected to compression and bending as well, detailed research is necessary. Current study examine the mechanical behavior under flexural and/or compressive loads using concrete filled fiber reinforced plastic composite piles, which include large size diameter. 25 pile specimens which have various size of diameters and lengths were fabricated using hand lay-up or filament winding method to see the effect of fabrication method. The inner diameters of test specimens ranged from 165 mm to 600 mm, and the lengths of test specimens ranged from 1,350 mm to 8,000 mm. The strengths of the fill-in concrete were 27 and 40 MPa. Fiber volumes used in circumferential and axial directions are varied in order to see the difference. For some tubes, spiral inner grooves were fabricated to reduce shear deformation between concrete and tube. It was observed that the piles made using filament winding method showed higher flexural stiffness than those made using hand lay-up. The flexural stiffness of piles decreases from the early loading stage, and this phenomenon does not disappear even when the inner spiral grooves were introduced. It means that the relative shear deformation between the concrete and tube wasn't able to be removed.

Evaluation for Optimization of CT Dose Reduction Methods in PET/CT (PET/CT 검사 시 CT 피폭선량 감소 방법들의 최적화 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • Purpose Various methods for reducing radiation exposure have been continuously being developed. The aim of this study is to evaluate effectiveness of dose reduction, image quality and PET SUV changes by applying combination of automatic exposure dose(AEC), automated dose-optimized selection of X-ray tube voltage(CAREkV) and sinogram affirmed iterative reconstruction(SAFIRE) which can be controled by user. Materials and Methods Torso, AAPM CT performance and IEC body phantom images were acquired using biograph mCT64, (Siemens, Germany) PET/CT scanner. Standard CT condition was 120 kV, 40 mAs. Radiation exposure and noise were evaluated by applying AEC, CAREkV(120 kV, 40 mAs) and SAFIRE(120 kV, 25 mAs) with torso phantom compare to standard CT condition. And torso, AAPM and IEC phantom images were acquired with combination of 3 methods in condition of 120 kV, 25 mAs to evaluate radiation exposure, noise, spatial resolution and SUV changes. Results When applying AEC, CTDIvol and DLP were decreased by 50.52% and 50.62% compare to images which is not applying AEC. mAs was increased by 61.5% to compensate image quality according to decreasing 20 kV when applying CAREkV. However, CTDIvol and DLP were decreased by 6.2% and 5.5%. When reference mAs was the lower and strength was the higher, reduction of radiation exposure rate was the bigger. Mean SD and DLP were decreased by 2.2% and 38% when applying SAFIRE even though mAs was decreased by 37.5%(from 40 mAs to 25 mAs). Combination of 3 methods test, SD decreased by 5.17% and there was no significant differences in spatial resolution. And mean SD and DLP were decreased by 6.7% and 36.9% compare to 120 kV, 40 mAs with AEC. For SUV test, there was no statistical differences(P>0.05). Conclusion Combination of 3 methods shows dose reduction effect without degrading image quality and SUV changes. To reduce radiation exposure in PET/CT study, continuous effort is needed by optimizing various dose reduction methods.

  • PDF

Clinical Analysis of the Surgical Treatments for Large Primary Spontaneous Pneumothorax (외과적 치료를 시행한 대량 일차성 자연기흉의 임상분석)

  • Kim, Byung-Ho;Huh, Dong-Myung;Han, Won-Kyung
    • Journal of Chest Surgery
    • /
    • v.42 no.3
    • /
    • pp.344-349
    • /
    • 2009
  • Background: The clinical history and physical findings of the patients with spontaneous pneumothorax depend largely on the extent of the collapse of the lung and the presence of pre-existing pulmonary disease. Large primary spontaneous pneumothorax is a possible serious condition and. so more active treatment will be necessary for these patients. The therapeutic guideline for large pneumothorax remains controversial. Therefore, by assessing the clinical results of surgical treatment for large primary pneumothorax, we aim to determine the indicators of treatment. Material and Method: Among 348 patients with primary spontaneous pneumothorax and who underwent surgical treatment from August 2004 through December 2007, 58 patients who responded to treatment for a large primary pneumothorax were included in the current study. We then retrospectively evaluated the operative findings and the surgical results. The patients with a pneumothorax of 80% or more, including those patients with tension pneumothorax, were considered to have a "large pneumothorax". Most of these patients Should be treated with a 12F chest tube. Thoracoscopic wedge resection was considered for treating recurrent pneumothorax, continuous air leakage, controlateral pneumothorax and first episode pneumothorax with visible blebs (> 1cm) seen on the computed tomography. Result: There were 50 men and 8 women with a mean age of 28.2 years (range: $14\sim54$ years). The mean length of hospitalization was 5.3 days (range: $2\sim10$ days). Nine patients underwent chest tube drainage only. Forty-nine patients underwent thoracoscopic wedge resection. The mean follow up time was 27.8 months (range: $10\sim58$ months). The actual site of air leakage could be located in 35 patients (71.4%) and this was correlated with pleural adhesion (p=0.005). The initial air leakage tended to be more correlated with intra-operative air leakage, although this was not statistically significant (p=0.066). The recurrence rate was 11.1 % for the patients with chest tube drainage and 2.0% for the patients with thoracoscopic wedge resection. Conclusion: Large primary pneumothorax requires an early diagnosis and early treatment. Thoracoscopic wedge resection may help to prevent recurrence of large primary pneumothorax.

Feasibility of Pediatric Low-Dose Facial CT Reconstructed with Filtered Back Projection Using Adequate Kernels (필터보정역투영과 적절한 커널을 이용한 소아 저선량 안면 컴퓨터단층촬영의 시행 가능성)

  • Hye Ji;Sun Kyoung You;Jeong Eun Lee;So Mi Lee;Hyun-Hae Cho;Joon Young Ohm
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.3
    • /
    • pp.669-679
    • /
    • 2022
  • Purpose To evaluate the feasibility of pediatric low-dose facial CT reconstructed with filtered back projection (FBP) using adequate kernels. Materials and Methods We retrospectively reviewed the clinical and imaging data of children aged < 10 years who underwent facial CT at our emergency department. The patients were divided into two groups: low-dose CT (LDCT; Group A, n = 73) with a fixed 80-kVp tube potential and automatic tube current modulation (ATCM) and standard-dose CT (SDCT; Group B, n = 40) with a fixed 120-kVp tube potential and ATCM. All images were reconstructed with FBP using bone and soft tissue kernels in Group A and only bone kernel in Group B. The groups were compared in terms of image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Two radiologists subjectively scored the overall image quality of bony and soft tissue structures. The CT dose index volume and dose-length product were recorded. Results Image noise was higher in Group A than in Group B in bone kernel images (p < 0.001). Group A using a soft tissue kernel showed the highest SNR and CNR for all soft tissue structures (all p < 0.001). In the qualitative analysis of bony structures, Group A scores were found to be similar to or higher than Group B scores on comparing bone kernel images. In the qualitative analysis of soft tissue structures, there was no significant difference between Group A using a soft tissue kernel and Group B using a bone kernel with a soft tissue window setting (p > 0.05). Group A showed a 76.9% reduction in radiation dose compared to Group B (3.2 ± 0.2 mGy vs. 13.9 ± 1.5 mGy; p < 0.001). Conclusion The addition of a soft tissue kernel image to conventional CT reconstructed with FBP enables the use of pediatric low-dose facial CT protocol while maintaining image quality.

A Experimental Study on Performance Improvement Factors of Used V4 Steel Pipe Support (재사용 V4 강재 파이프 서포트의 성능향상 요인에 관한 실험적 연구)

  • Choi, Myeongki;Park, Jongkeun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.43-48
    • /
    • 2020
  • It is considered that most of reusable pipe supports, which are used as formwork support posting at construction sites, do not meet the performance standard. Due to the use of reusable pipe supports that do not meet such performance standard the potential risk of collapse accident is increasing. Therefore, this study identifies the status of compliance with performance standard, and presents the requirements for improving quality control to prevent the collapse of pipe supports reused at the construction site. First, if the female thread of the product with no clearance and new support pin with the diameter of 12mm are replaced at the same time for use, it is considered that the performance will be improved. Second, as the quality performance during use can be improved in the case of larger thickness of inner diameter compared to the case of larger thickness of outer diameter, it is necessary to increase the inner pipe thickness greatly than the current thickness. Based on the results of this study, it is expected that the performance the reusable pipe support (V4) can be improved, if the diameter of the support pin is 12mm, the female thread has a small clearance, and the inner tube thickness is 2.3 ~ 2.7mm. In addition, it is considered that other performance improvement factors included in the study results could be used as important data for improving the performance of reusable pipe support.

New Micro Rotating Mercury Electrode for Voltammetry (전류전압법을 위한 미크로 회전수은 전극)

  • Choe, Gyu-Won
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.81-84
    • /
    • 1967
  • A simple rotating micro mercury electrode is constructed in such a way that the mercury surface can be renewed quite easily with reasonable reproducibility. It consists of a glass capillary of about 1mm diameter connected to a mercury filled tube by means of a ground joint that allows mercury flow at a particular relative position only, and the electrical connection between the two parts is made by a platinum wire fused in the bottom of the latter. Thus the mercury surface exposed at the tip of the capillary replaces the platinum tip of the usual platinum micro electrode; however, the capillary has to be bent so that the tip directs upwards. It has been found to be a convenient electrode in the amperometric titration in strongly acidic media. Furthermore, it has been advantageously used in the alternating-current polarography because of its smaller electrical resistance than the ordinary dropping mercury electrodes. It also can be used as a stationary mercury electrode in fast scanning polarography.

  • PDF

Tubular Web Reduced Beam Section (TW-RBS) connection, a numerical and experimental study and result comparison

  • Zahrai, Seyed M.;Mirghaderi, Seyed R.;Saleh, Aboozar
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.571-583
    • /
    • 2017
  • A kind of accordion-web RBS connection, "Tubular Web RBS (TW-RBS)" connection is proposed in this research. TW-RBS is made by replacing a part of web with a tube at the desirable location of the beam plastic hinge. This paper presents first a numerical study under cyclic load using ABAQUS finite element software. A test specimen is used for calibration and comparison of numerical results. Obtained results indicated that TW-RBS would reduce contribution of the beam web to the whole moment strength and creates a ductile fuse far from components of the beam-to-column connection. Besides, TW-RBS connection can increase story drift capacity up to 9% in the case of shallow beams which is much more than those stipulated by the current seismic codes. Furthermore, the tubular web like corrugated sheet can improve both the out-of-plane stiffness of the beam longitudinal axis and the flange stability condition due to the smaller width to thickness ratio of the beam flange in the plastic hinge region. Thus, the tubular web in the plastic hinge region improves lateral-torsional buckling stability of the beam as just local buckling of the beam flange at the center of the reduced section was observed during the tests. Also change of direction of strain in arc shape of the tubular web section is smaller than the accordion webs with sharp corners therefore the tubular web provides a better condition in terms of low-cycle fatigue than other accordion web with sharp corners.

The study of drawing on the heterogeneous materials for the unidirectional alignment of carbon nanofiber in metal matrix nanocomposite (금속기지 나노복합재용 탄소나노섬유 일방향 배열을 위한 이종재 인발 연구)

  • 백영민;이상관;엄문광;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.301-301
    • /
    • 2003
  • In current study, Nanocomposites are reinforced with carbon nanofiber, carbon nanotube and SiC, etc. Since the nano reinforcements have the excellent mechanical, thermal and electrical properties compared with that of existing composites, it has lately attracted considerable attention in the various areas. Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties. Until now, strengthening of the copper alloy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the alloy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conducting material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the cooer matrix composites of high strength and electric conductivity. In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process and align mechanism as well as optimized drawing process parameter are verified via numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of 10∼20$\mu\textrm{m}$ in length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper. it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber Optimal parameter for drawing process was obtained by analytical and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc. The lower drawing angles and lower reduction areas provides the less rupture of co tube is noticed during the drawing process and the better alignment of carbon nanofiber is obtained.

  • PDF