• Title/Summary/Keyword: Tube bend

Search Result 56, Processing Time 0.031 seconds

Analysis of Fluid-Induced Vibration in the APR1400 Steam Generator Tube (신형경수로1400 증기발생기 전열관의 유체유발진동 해석)

  • 이광한;정대율;변성철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.84-91
    • /
    • 2003
  • Flow-Induced Vibration of steam generator tubes may result in fretting wear damage at the tube-to-support locations. KSNP(Korean Standard Nuclear Power plant) steam generators experienced fretting wear in the upper part of U-bend above the central cavity region of steam generators. This region has conditions susceptible to the flow-induced vibration, such as high flow velocity, high void fraction, and longer unsupported span. To improve its performance, APR1400 steam generator is designed with additional supports in this region to reduce unsupported span and to reduce peak velocity in the central cavity region. In this paper, we examined its performance improvement using ATHOS code. The thermal-hydraulic condition in the region of secondary side of APR1400 steam generator is obtained using the ATHOS3 code. The effective mass for modal analysis is calculated using the void fraction, enthalpy, and operating pressure information from ATHOS3 code result. With the effective mass distribution along the tube, natural frequency and mode shape is obtained using ANSYS code. Finally, stability ratios and real mean squared displacements for selected tubes of the APR1400 steam generator are computed. From these results, the current design of the APR1400 steam generator are examined.

  • PDF

Lug Arrangement and Dynamic Analysis of Lifting Simulation for Underwater Installation of Structure in Asymmetric Position (비대칭 위치의 수중 구조물 설치를 위한 러그 위치 산정 및 리프팅 동역학 해석)

  • Jo, A-Ra;Park, Kwang-Phil;Lee, Hyun-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.283-289
    • /
    • 2015
  • RGT(Riser Guide Tube) is a part of mooring on the bottom of a turret system to be connected with a production riser, and DBSC(Diverless Bend Stiffener Connector) is a latching component between them. In this paper, appropriate lug arrangement is decided mathematically for the case that a DBSC is lifted and installed on a RGT under the water while FPSO is under construction. Considering asymmetric arrangement & position of RGT and initial lug position, additional lug positions are determined by using an optimization method. The modified installation scheme with new lug points is investigated with a lifting simulation system, SIMSON. The simulation result shows that the installation of DBSC on RGT under the given conditions is quite feasible; therefore the mathematical method is proven to be appropriate.

A PHOTOELASTIC STUDY ON THE INITIAL STRESS DISTRIBUTION OF THE MOLAR ANCHORING SPRING(MAS) DURING RETRACTION OF THE MAXILLARY CANINE (상악견치 후방견인시 저항원 조절을 위한 MAS(Molar Anchoring Spring)의 초기 응력분포에 관한 광탄성학적 연구)

  • Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.26 no.4
    • /
    • pp.341-348
    • /
    • 1996
  • The efficiency of maxillary canine retraction by means of sliding mechanics along an 0.016 continuous labial arch and an 0.009 inch in diameter with a lumen of 0.030 inch NiTi closed coil spring was compared with that using the same NiTi closed coil spring and Molar Anchoring Spring(MAS) which was designed by author. MAS was made of .017" X .025" TMA wire and was given 60 degree tip-back bend on the wire close to the molar tube. This study was designed to investigate molar and canine root control during retraction into an extraction site with continuous arch wire system. Two techniques were tested with a continuous arch model embedded in a photoelastic resin. A photoelastic model was employed to visualize the effects of forces applied to canine and molar by two retraction mechanics. With the aid of polarized light, stresses were viewed as colored fringes. The photoelastic overview of the upper right quadrant showed that stress concentrations were observed in its photoelastic model. The obtained results were as follows. 1. Higher concentration of compression can be seen clearly at the distal curvature of the canine and mesial curvature of the molar and premolar when NiTi closed coil spring was applied only, which means severe anchorage loss of the molar and uncontrolled tipping of the canine. 2. The least level compression was presented at the mesial root area of the molar and premolar, and mesial root area of the canine when NiTi closed coil spring and MAS were used simultaneously. Especially mesial alveolar crest region of the canine was shown moderate level of compression that means MAS can be used as a appliance for anchorage control and prevention of canine extrusion and uncontrolled tipping during canine retraction.

  • PDF

EFFECTS OF SUPPORT STRUCTURE CHANGES ON FLOW-INDUCED VIBRATION CHARACTERISTICS OF STEAM GENERATOR TUBES

  • Ryu, Ki-Wahn;Park, Chi-Yong;Rhee, Hui-Nam
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.97-108
    • /
    • 2010
  • Fluid-elastic instability and turbulence-induced vibration of steam generator U-tubes of a nuclear power plant are studied numerically to investigate the effect of design changes of support structures in the upper region of the tubes. Two steam generator models, Model A and Model B, are considered in this study. The main design features of both models are identical except for the conditions of vertical and horizontal support bars. The location and number of vertical and horizontal support bars at the middle of the U-bend region in Model A differs from that of Model B. The stability ratio and the amplitude of turbulence-induced vibration are calculated by a computer program based on the ASME code. The mode shape with a large modal displacement at the upper region of the U-tube is the key parameter related to the fretting wear between the tube and its support structures, such as vertical, horizontal, and diagonal support bars. Therefore, the location and the number of vertical and horizontal support bars have a great influence on the fretting wear mechanism. The variation in the stability ratios for each vibrational mode is compared with respect to Model A and Model B. Even though both models satisfy the design criteria, Model A shows substantial improvements over Model B, particularly in terms of having greater amplitude margins in the turbulence-excited vibration (especially at the inner region of the tube bundle) and better stability ratios for the fluid-elastic instability.

A Study on the Acoustical Characteristics of Exhaust Decoupler (배기계 디커플러의 음향 특성에 관한 연구)

  • Hur, Deog-Jae;Lim, Jong-Yun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.93-99
    • /
    • 2006
  • Flexible couplers are widely used for exhaust transmitted vibration reduction in vehicles. This paper describes an investigation into the acoustical characteristics of exhaust flexible coupler by the simulation and testing. Computational acoustic simulation is carrying out to investigate resonance frequency and transmission loss of decoupler using the boundary element method and transfer matrix approach. To confirm the acoustical simulation results of exhaust decoupler, we compare with measured experimental results by the test of transmission loss measurement system. In the comparison with simulation results and tests results, there is correctly fit the resonance frequency and the trend of transmission loss. Also, we show that the acoustical structure of decoupler is analogous to the expended tube or side branch resonator. The characteristics of exhaust decoupler have a marked increase in the acoustic attenuation at the specified frequency bend. Therefore the decoupler is applied to develop the exhaust system not only for the vibration isolator but also for the noise attenuator.

A Study on the Thermal Performance of a Z-shaped Heat Pipe (Z자 형상을 갖는 히트파이프에 대한 열성능 연구)

  • Park, S.Y.;Boo, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.741-745
    • /
    • 2001
  • The necessity of a Z-shape heat pipe may occur in a special application such as a cooling module for an electronic equipment having a limited accessible space. Either of the two end part works as evaporator or condenser and the length of the middle part is 200mm. The heat pipe was made of 3/8 inch copper tube having 60 spiral groove with screw angle of 10 degrees. Water and acetone were used as working fluids. The fill charge ratio of the working fluid was varied for different values of thermal loads. The thermal resistance was calculated based on the temperature measurements along the heat pipe axis. The maximum thermal loads were 80W for water and 100W for acetone heat pipe. The optimum fill charge ratio was identified through a series of experiments.

  • PDF

Work-rate Estimation for Predicting Fretting-wear in SG Tubes due to Turbulence Excitation (난류 가진에 의한 증기발생기 전열관의 마모 일률 평가)

  • 조봉호;유기완;박치용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.115-118
    • /
    • 2004
  • In this study, amplitudes of turbulence excitation are obtained for selected tubes inside the KSNP SG and their normal work-rates are investigated to estimate the magnitude of fretting-wear. From the results of numerical calculation, row 40&41 tubes show the maximum work-rates. Up to this row number, the work-rates inside the row 41 have much larger values than those of outside tubes. This phenomenon reveals the particular central one which has larger normal work-rate than that of outside zone. It turns out that both of the higher local mode at the U-bend region and the larger value of effective mass in the central region Increase the normal work-rate enormously.

  • PDF

A Study of Hot Metal Extru-Bending Process

  • Jin In-Tai
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.11a
    • /
    • pp.63-70
    • /
    • 2002
  • The purpose of the present study is to propose a new way of manufacturing curved metal tubes with arbitrary sections and way of eliminating the conventional bending defects such as thinning and thickening, in the wall of tube, distortion of the section, and wrinkling and folding on the surface by the extrusion bending process that can extrude and weld together one or more billets inside dies cavity, and can bend them during extrusion due to the gradient of extrusion velocities controlled by the eccentricity of the cavity sections between the entrance and the exit of the eccentric conical extrusion bending dies and conical plug, or by the relative size of the holes of multi-hole container, or by the relative moving velocity of multi-punches.

  • PDF

Development of 3.6 MW, 4 ${\mu}s$, 200 pps Pulse Modulator for a High power magnetron (고출력 마그네트론 구동용 3.6 MW, 4 ${\mu}s$, 200 pps 펄스모듈레이터 개발)

  • Son, Y.G.;Jang, S.D.;Oh, J.S.;Cho, M.H.;NamKang, W.;Lee, H.K.;Bae, Y.S.;Lee, K.T.;Son, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1778-1780
    • /
    • 2004
  • Microwave heating system of KSTAR consists of ECH and LHCD. ECH and LHCD offer the reliability of operation in the beginning of plasma formation and non-inductive current drive for long time steady state operation with maintaining MHD stability, respectively. LHCD demands 5 GHz of frequency and consists of c-band waveguide, 4-port circuitor, dry dummy load, dual directional coupler, E-bend, arc detector. Our system is a lineup type pulse modulator that has 45 kV of output pulse voltage, 90 A of pulse current, 4 us of pulse width. 1:4 step-up pulse transformer, 7 stages of PFN and thyratron tube (E2V, CX1191D) are used in this modulator. The purpose of this paper is to show the modulator design and experimental result.

  • PDF

Experimental Study of Three-Dimensional Turbulent Flow in a $90^{\circ}C$ Rectanglar Cross Sectional Strongly Curved Duct (직사각형 단면을 갖는 $90^{\circ}C$ 급곡관 내의 3차원 난류유동에 관한 실험적 연구)

  • 맹주성;류명석;양시영;장용준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.262-273
    • /
    • 1991
  • In the present study, the steady, incompressible, isothermal, developing flow in a 90.deg. rectangular cross sectional strongly curved duct with aspect ratio 1:1.5 and Reynolds number of 9.4*10$^{4}$ has been investigated. Measurements of components of mean velocities, pressures, and corresponding components of the Reynolds stress tensor are obtained with a hot-wire anemometer and pitot tube. In general, flow in a curved duct is characterized by the secondary vortices which are driven mainly by centrifugal force-radial pressure gradient imbalance, and the stress field stabilizing effects near the convex wall and destablizing effects close to the concave wall. It was found that the secondary mean velocities attain values up to 39% of the bulk velocity and are largely responsible for the convections of Reynolds stress in the cross stream plane. Therefor upstream of the bend the Reynolds stress are low. Corresponding to the small boundary layer thickness. At successive planes, large values of Reynolds stress were observed near the concave surface and the side wall.