• Title/Summary/Keyword: Tube angle

Search Result 464, Processing Time 0.026 seconds

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.

Geometric Calibration of Cone-beam CT System for Image Guided Proton Therapy (영상유도 양성자치료를 위한 콘빔 CT 재구성 알고리즘: 기하학적 보정방법에 관한 연구)

  • Kim, Jin-Sung;Cho, Min-Kook;Cho, Young-Bin;Youn, Han-Bean;Kim, Ho-Kyung;Yoon, Myoung-Geun;Shin, Dong-Ho;Lee, Se-Byeung;Lee, Re-Na;Park, Sung-Yong;Cho, Kwan-Ho
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.209-218
    • /
    • 2008
  • According to improved radiation therapy technology such as IMRT and proton therapy, the accuracy of patient alignment system is more emphasized and IGRT is dominated research field in radiation oncology. We proposed to study the feasibility of cone-beam CT system using simple x-ray imaging systems for image guided proton therapy at National Cancer Center. 180 projection views ($2,304{\times}3,200$, 14 bit with 127 ${\mu}m$ pixel pitch) for the geometrical calibration phantom and humanoid phantoms (skull, abdomen) were acquired with $2^{\circ}$ step angle using x-ray imaging system of proton therapy gantry room ($360^{\circ}$ for 1 rotation). The geometrical calibration was performed for misalignments between the x-ray source and the flat-panel detector, such as distances and slanted angle using available algorithm. With the geometrically calibrated projection view, Feldkamp cone-beam algorithm using Ram-Lak filter was implemented for CBCT reconstruction images for skull and abdomen phantom. The distance from x-ray source to the gantry isocenter, the distance from the flat panel to the isocenter were calculated as 1,517.5 mm, 591.12 mm and the rotated angle of flat panel detector around x-ray beam axis was considered as $0.25^{\circ}$. It was observed that the blurring artifacts, originated from the rotation of the detector, in the reconstructed toomographs were significantly reduced after the geometrical calibration. The demonstrated CBCT images for the skull and abdomen phantoms are very promising. We performed the geometrical calibration of the large gantry rotation system with simple x-ray imaging devices for CBCT reconstruction. The CBCT system for proton therapy will be used as a main patient alignment system for image guided proton therapy.

  • PDF

Analysis of Air Current Measurements at External Induction-Style Kitchen and Bathroom Vents (외기유인형 주방·욕실 배기구의 기류측정 분석)

  • Lee, Yong-Ho;Kim, Seong-Yong;Park, Jin-Chul;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.76-84
    • /
    • 2012
  • This study conducted experiments to measure air currents in an experimental building according to external conditions, types of induction ducts, and types of internal sockets by applying an external induction duct comprised of inducing openings and lines and induction units to the kitchen and bathroom vents at the rooftop of a super high-rise apartment building in order to help to improve the venting performance. The study also proposed the optimization of the external induction-style kitchen and bathroom vents capable of wind power generation. (1) As for air current distribution according to vent velocity changes, it increased the venting performance of the kitchen and bathroom by 1.0m/s at vent velocity of 2.0m/s or higher and allowed for wind power generation. (2)As for air current distribution according to external velocity changes, it increased the venting performance of the kitchen and bathroom by 1.2m/s at external velocity of 2.0m/s or higher and allowed for wind power generation. (3)As for air current distribution according to wind direction changes($0{\sim}180^{\circ}$), it was favorable for higher vent velocity when the angle between the external induction duct direction and prevailing wind direction was within ${\pm}30^{\circ}$. (4)As for air current distribution according to induction duct type, the[M1] type combining the inducing openings and lines with the induction units recorded the highest improvement effects in the kitchen and bathroom venting performance by increasing vent velocity by 46%. (5)As for air current distribution according to the changing types of internal sockets where the main ducts of the kitchen and bathroom are connected to the external induction ducts, the venturi tube type[Sv] increased vent velocity by 66% based on the smoothest external inflow.

Temperature Analysis for the Point-Cell Source in the Vapor Deposition Process

  • Park, Jong-Wook;Kim, Sung-Cho;Hun Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1680-1688
    • /
    • 2004
  • The information indicating device plays an important part in the information times. Recently, the classical CRT (Cathod Ray Tube) display is getting transferred to the LCD (Liquid Crystal Display) one which is a kind of the FPDs (Flat Panel Displays). The OLED (Organic Light Emitting Diodes) display of the FPDs has many advantages for the low power consumption, the luminescence in itself, the light weight, the thin thickness, the wide view angle, the fast response and so on as compared with the LCD one. The OLED has lately attracted considerable attention as the next generation device for the information indicators. And also it has already been applied for the outside panel of a mobile phone, and its demand will be gradually increased in the various fields. It is manufactured by the vapor deposition method in the vacuum state, and the uniformity of thin film on the substrate depends on the temperature distribution in the point-cell source. This paper describes the basic concepts that are obtained to design the point-cell source using the computational temperature analysis. The grids are generated using the module of AUTOHEXA in the ICEM CFD program and the temperature distributions are numerically obtained using the STAR-CD program. The temperature profiles are calculated for four cases, i.e., the charge rate for the source in the crucible, the ratio of diameter to height of the crucible, the ratio of interval to height of the heating bands, and the geometry modification for the basic crucible. As a result, the blowout phenomenon can be shown when the charge rate for the source increases. The temperature variation in the radial direction is decreased as the ratio of diameter to height is decreased and it is suggested that the thin film thickness can be uniformed. In case of using one heating band, the blowout can be shown as the higher temperature distribution in the center part of the source, and the clogging can appear in the top end of the crucible in the lower temperature. The phenomena of both the blowout and the clogging in the modified crucible with the nozzle-diffuser can be prevented because the temperature in the upper part of the crucible is higher than that of other parts and the temperature variation in the radial direction becomes small.

Effect of Transient Condition on Propeller Shaft Movement during Starboard Turning under Ballast Draught Condition for the 50,000 DWT Oil Tanker (50,000 DWT 유조선의 밸러스트 흘수에서 우현 전타시 과도상태가 프로펠러축 거동에 미치는 영향 연구)

  • Lee, Jae-ung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.412-418
    • /
    • 2020
  • Generally, the propeller shaft that constitutes the ship shaft system has different patterns of behavior due to the ef ects of engine power, propeller load and eccentric thrust, which increases the risk of bearing failure by causing local load variations. To prevent this, different studies of the propulsion shaft system have been conducted focused the relative inclination angle and oil film retention between the shaft and the support bearing, mainly with respect to the Rules for the Classification of Steel Ships. However, in order to secure the stability of the propulsion shaft via a more detailed evaluation, it is necessary to consider dynamic conditions, including the transient state due to sudden change in the stern wakefield. In this context, a 50,000 DWT vessel was analyzed using the strain gauge method, and the effects of propeller shaft movement were analyzed on the starboard rudder turn which is a typical transient state during normal continuous rate(NCR) operation in ballast draught condition. Analysis results confirm that the changed propeller eccentric thrust acts as a force that temporarily pushes down the shaft to increase the local load of the stern tube bearing and negatively affects the stability of the shaft system.

Characterization of Radiation Field in the Steam Generator Water Chambers and Effective Doses to the Workers (증기발생기 수실의 방사선장 특성 및 작업자 유효선량의 평가)

  • Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.215-223
    • /
    • 1999
  • Characteristics of radiation field in the steam generator(S/G) water chamber of a PWR were investigated and the anticipated effective dose rates to the worker in the S/G chamber were evaluated by Monte Carlo simulation. The results of crud analysis in the S/G of the Kori nuclear power plant unit 1 were adopted for the source term. The MCNP4A code was used with the MIRD type anthropomorphic sex-specific mathematical phantoms for the calculation of effective doses. The radiation field intensity is dominated by downward rays, from the U-tube region, having approximate cosine distribution with respect to the polar angle. The effective dose rates to adults of nominal body size and of small body size(The phantom for a 15 year-old person was applied for this purpose) appeared to be 36.22 and 37.06 $mSvh^{-1}$) respectively, which implies that the body size effect is negligible. Meanwhile, the equivalent dose rates at three representative positions corresponding to head, chest and lower abdomen of the phantom, calculated using the estimated exposure rates, the energy spectrum and the conversion coefficients given in ICRU47, were 118, 71 and 57 $mSvh^{-1}$, respectively. This implies that the deep dose equivalent or the effective dose obtained from the personal dosimeter reading would be the over-estimate the effective dose by about two times. This justifies, with possible under- or over- response of the dosimeters to radiation of slant incidence, necessity of very careful planning and interpretation for the dosimetry of workers exposed to a non-regular radiation field of high intensity.

  • PDF

Humidification of Air Using Water Injector and Cyclonic Separator (관 내 삽입 인젝터와 사이클론을 이용한 공기 가습)

  • Kim, Beom-Jun;Kim, Sung-Il;Byun, Su-Young;Kim, Min-Soo;Kim, Hyun-Yoo;Kwon, Hyuck-Ryul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.491-498
    • /
    • 2010
  • Humidification of PEM fuel cells is necessary for enhancing their performance and lifetime. In this study, a humidification system was designed and tested; the system includes an air-supply tube (inner diameter: 75 mm) through which a nozzle can be directly inserted and a cyclonic separator for the removal of water droplets. Three types of nozzles were employed to study the influence of injection pressure, air flow rate, and spray direction on the humidification performance. To evaluate the humidification performance, the concept of humidification efficiency was defined. In the absence of an external heat source, latent heat for evaporation will be supplied by the own enthalpies of water and air. Thus, the amount of water sprayed from the nozzle is the most critical factor affecting the humidification efficiency. Water droplets were efficiently removed by a cyclonic separator, but re-entrainment occurred at high air flow rates. The absolute humidity and humidification efficiency were $21.29\;kJ/kg_{da}$ and 86.57%, respectively, under the following conditions: nozzle type PJ24; spray direction angle $90^{\circ}$; injection pressure 1200 kPa; air flow rate 6000 Nlpm.

Characteristics Testing of the ECT Bobbin Probe for Steam Generator Tube Inspection of Nuclear Power Plant (원전 증기발생기 전열관 와전류검사 보빈탐촉자의 특성 시험)

  • Nam, Min-Woo;Lee, Hee-Jong;Cho, Chan-Hee;Yoo, Hyun-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.386-395
    • /
    • 2010
  • The steam generator management program(SGMP) has recently defined the procedures for the qualification of eddy current hardware and technique. These procedures provide two basic methods for qualification. The first way is to qualify the equipment or the probe by using the flaw mechanism and method of the pulled tubes from the heat exchangers or the artificial flawed tubes. The second way is to verify the equivalency with the characteristics of the qualified equipment or probe. In this case, the qualified equipment or probe may be modified to substitute or replace instruments or probes without re-qualification provided that the range of essential variables defined in the examination technique specification sheet are met. This study is to describe the result of the comparative performance evaluation of bobbin coil eddy current probes manufactured by KEPCO Research Institute and probes manufactured by a foreign manufacturer. As a result of this study, although there were minor differences between the two kinds of probes, it was evaluated that the two kinds of probes were almost identical in the significant performance characteristics described in the KEPCO Research Institute guideline.

Observations on the Modulated Structure in Pyrochlore-type Compounds, $In_2(Ti_{1.7}Zn_{0.3})O_{0.67}$ and $In_2(Ti_{1.7}Mg_{0.3})O_{6.7}$ (Pyrochlore형 화합물 $In_2(Ti_{1.7}Zn_{0.3})O_{0.67}$$In_2(Ti_{1.7}Mg_{0.3})O_{6.7}$에서의 변조구조 관찰)

  • Lee, Hwack-Joo;Park, Hyun-Min;Cho, Yang-Koo;Ryu, Hyun;Nahm, Sahn;Bando, Y.
    • Applied Microscopy
    • /
    • v.29 no.4
    • /
    • pp.471-477
    • /
    • 1999
  • Microstructural observations on the pyrochlore-type $Lu_2Ti_2O_7$ and the similar type of compounds, $In_2(Ti_{1.7}Zn_{0.3})O_{6.7}$ and $In_2(Ti_{1.7}Mg_{0.3})O_{6.7}$ which were made by the isothermal heat-treatment at 1623K for 18 days in Pt tube, were carried out using a top-entry HRTEM working at 200 kV. The modulated structures were found in both compounds, however, not in $Lu_2Ti_2O_7$. From the electron diffraction pattern analysis, the modulated superlattices are incommensurate and are 2.69 times of sublattices along (220) direction. The high resolution TEM images have shown that the superlattices consist of alternate superlattices which are composed of two or three sublattices, resulting in the average of 2.7 times of sublattices in accordance with the analysis of electron diffraction patterns. The crystal structures of both compounds are found to quite similar to those of pyrochlore, however the evidence that the cubic axes are slightly deviated from right angle. The modulated structure has gradually changed to the unmodulated structure induced by electron irradiation.

  • PDF

THE DIAGNOSIS OF IMPACTED MAXILLARY MESIODENS USING 3-DIMENSIONAL COMPUTED TOMOGRAPHY : A CASE REPORT (3차원 전산화 단층촬영을 이용한 상악 정중 과잉치의 진단)

  • Hong, Young-Woo;Kim, Seong-Oh;Sohn, Hyung-Kyu;Lee, Jong-Gap
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.3
    • /
    • pp.549-554
    • /
    • 1998
  • The prevalence of the supernumerary tooth is $1{\sim}4%$. It usually occurs in the permanent dentition. It frequently occurs in the maxillary mid palatal area. The presence of the supernumerary tooth causes the following problems ; (1) interfering the eruption of successional tooth, (2) displacing the neighboring teeth, (3) resulting large diastema, (4) forming cystic change. So the supernumerary tooth should be removed as soon as possible. To extract the supernumerary tooth, the exact position must be noticed first. Radiographic techniques that were used in the past are tube shift technique, right angle technique, sterioradiography, using radiopaque contrast media and conventional tomography. But these methods include the subjective opinion of the operator. So, a technique eliminating the operator's opinion and showing the position 3-dimentionally can be used. 3-dimentional computed tomography equipped with dental softwares can show the position of the impacted supernumerally tooth in 3-dimentional position. It has an advantage to eliminate the subjective opinion of the operator. With a fast computer this techenique is done in a relatively short period of time. The rationale of this methods is relatively simple. After tacking X-ray and reconstructing the data 3-dimentionally, sequential removal of the soft tissue and hard tissue(bone) CT number leaves the teeth alone in 3-dimentional position. The image can be seen from anywhere, so the operator can see the image in front, rear, upper, and lower positions. In both cases 1 and 2, the position of the impacted supernumerary tooth is viewed by the 3-dimensional computed tomography. And it made the operator easy to figureout the exact position.

  • PDF